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Abstract (in German)

Diese Arbeit beschäftigt sich mit Booleschen Schaltkreisen, die aus UND-, ODER-
und NICHT-Gattern aufgebaut sind. Wenn nicht anders angegeben, setzen wir
dabei voraus, dass jedes Gatter höchstens zwei Eingänge hat. Boolesche Schalt-
kreise berechnen Boolesche Funktionen. Die Schaltkreiskomplexität einer Boole-
schen Funktion f ist die kleinstmögliche Zahl von Gattern eines Schaltkreises für
f .

Die beste bekannte untere Schranke für die Schaltkreiskomplexität einer ex-
plizit angegebenen Funktion ist noch linear in der Zahl der Variablen. Es konnten
jedoch superpolynomiale untere Schranken für monotone Schaltkreise bewiesen
werden. Ein Schaltkreis heiÿt monoton, wenn er keine NICHT-Gatter (Nega-
tionen) aufweist. Die Approximationsmethode liefert superpolynomiale untere
Schranken für die monotone Schaltkreiskomplexität verschiedener Funktionen.
Auch ist bekannt, dass Negationen zur Berechnung so genannter Slice-Funktionen
fast keinen Beitrag leisten können. Eine superpolynomiale untere Schranke für die
monotone Komplexität einer Slice-Funktion impliziert eine superpolynomiale un-
tere Schranke für ihre nicht-monotone Komplexität. Allerdings reichen die heute
bekannten Methoden anscheinend nicht aus, um ausreichende untere Schranken
für die Komplexität von Slice-Funktionen zu zeigen. Daher ist es gerechtfertigt,
nach neuen Ansätzen für den Beweis unterer Schranken monotoner Schaltkreis-
komplexität zu suchen.

In dieser Arbeit unternehmen wir einige Schritte in diese Richtung. Wir unter-
suchen einige Schaltkreisklassen, die eingeschränkter sind als monotone Schalt-
kreise. Wir beweisen optimale exponentielle untere Schranken für diese Schalt-
kreisklassen. Sie sagen aus, dass die Schaltkreise genauso viele ODER-Gatter
benötigen wie die disjunktiven Normalformen der untersuchten Funktionen. Das
heiÿt, dass wir kein einziges ODER-Gatter sparen können, wenn wir die jeweiligen
Schaltkreisklassen anstelle von disjunktiven Normalformen zulassen. Wir sagen
deshalb, diese disjunktiven Normalformen sind unkomprimierbar. Wir betrachten
diese Unkomprimierbarkeit als eine bemerkenswerte Eigenschaft der untersuch-
ten Funktionen. Wir beweisen auch eine obere Schranke, die zeigt, dass einige
dieser disjunktiven Normalformen im Falle allgemeiner monotoner Schaltkreise
doch stark komprimierbar sind.

Wir führen Pseudo-Slice-Funktionen ein, die Slice-Funktionen ähnlich sind. Da
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keine untere Schranken für Slice-Funktionen bekannt sind, schlagen wir vor, die
Komplexität der Pseudo-Slice-Funktionen zu untersuchen. Die Beweismethoden
für untere Schranken, die wir in dieser Arbeit vorstellen, sind auch auf Pseudo-
Slice-Funktionen anwendbar.

Wir nennen einen Schaltkreis multilinear, wenn die Eingänge zu jedem seiner
UND-Gatter aus disjunkten Variablenmengen berechnet werden. Um eine forma-
lere De�nition anzugeben, bezeichnen wir mit var (g) die Menge der Variablen,
die im bei g wurzelnden Teilschaltkreis vorkommen. Ein Schaltkreis ist multili-
near, wenn var (g1) ∩ var (g2) = ∅ für jedes seiner UND-Gatter mit Eingängen
g1 und g2. Multilineare Schaltkreise wurden in [40, 27] untersucht ([27] verwen-
det eine etwas weniger einschränkende De�nition der Multilinearität). Multili-
neare Schaltkreise sind eine Verallgemeinerung nichtdeterministischer read-once
Branching-Programme, die viel Aufmerksamkeit auf sich gezogen haben.

Wir bezeichnen mit PI (f) die Menge der Primimplikanten einer Booleschen
Funktion. Es ist klar, dass jede Funktion f von einem multilinearen Schaltkreis
mit |PI (f)| − 1 ODER-Gattern berechnet werden kann: man nehme einfach die
disjunktive Normalform. Viele bekannte Funktionen haben multilineare Schalt-
kreise, die viel kleiner sind als ihre disjunktiven Normalformen. Die Threshold-
Funktion T n

k ist ein Beispiel. Die Threshold-Funktion T n
k hat

(
n
k

)
Primimplikan-

ten, kann aber von einem multilinearen Schaltkreis der Gröÿe O (nk) berechnet
werden. Die Lücke zwischen der Gröÿe des kleinsten multilinearen Schaltkrei-
ses für eine gewisse Funktion und die Gröÿe der disjunktiven Normalform dieser
Funktion kann also exponentiell sein. Es ist auch bekannt, dass die Lücke zwischen
der multilinearen Komplexität und der monotonen Komplexität exponentiell ist
[40].

Wir �nden eine Klasse von Funktionen, deren multilineare Schaltkreise genau-
so viele ODER-Gatter wie ihre disjunktiven Normalformen benötigen, nämlich die
so genannten vereinigungsfreien Funktionen. Wir nennen eine monotone Funk-
tion vereinigungsfrei, wenn die Vereinigung von zwei Primimplikanten nie einen
weiteren Primimplikanten enthält. Wir beweisen den folgenden Satz.

Satz 5.4. Sei f eine monotone vereinigungsfreie Funktion. Dann hat jeder mul-
tilineare Schaltkreis für f mindestens |PI (f)| − 1 ODER-Gatter (genauso viele
wie die disjunktive Normalform).

Die Clique-Funktion CLIQUE (n, s) ist auf
(

n
2

)
Variablen de�niert, die die

Kanten eines ungerichteten Graphen G mit n Knoten repräsentieren. Die Funk-
tion CLIQUE (n, s) nimmt genau dann den Wert 1 an, wenn G eine Clique
der Gröÿe s aufweist. Wir zeigen, dass diese Funktion vereinigungsfrei ist. Da
die Funktion CLIQUE (n, s)

(
n
s

)
Primimplikanten hat, erhalten wir damit das

folgende Korollar.

Korollar 5.5. Multilineare Schaltkreise für CLIQUE (n, s) benötigen
(

n
s

)
− 1

ODER-Gatter.
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Weil nichtdeterministische read-once Branching-Programme von multilinea-
ren Schaltkreisen simuliert werden können, verbessert Korollar 5.5 die untere
Schranke von exp (Ω (min (s, n− s))) aus [6] für nichtdeterministische read-once
Branching-Programme für CLIQUE (n, s).

Unser nächstes Resultat macht deutlich, dass die Eigenschaft der Vereini-
gungsfreiheit nicht ausreicht, um gute untere Schranken für allgemeine monotone
Schaltkreise zu beweisen. Nach Korollar 5.5 benötigt ein multilinearer Schaltkreis
für CLIQUE (n, n− 1) n − 1 ODER-Gatter. Für diese Funktion zeigen wir die
folgende obere Schranke für allgemeine monotone Schaltkreise.

Satz 6.1. Die Funktion CLIQUE (n, n− 1) kann durch eine monotone Formel
mit O (log n) ODER-Gattern berechnet werden.

Dies ist die erste nicht-triviale obere Schranke für die monotone Komplexität
der Clique-Funktion. Die einzige andere obere Schranke, die wir kennen, ist in
[46] und macht lediglich über die nicht-monotone Komplexität eine Aussage.

Ein Schaltkreis hat alternierende Tiefe d, wenn d die gröÿte Zahl von Blö-
cken aus ODER-Gattern und Blöcken aus UND-Gattern auf Wegen zwischen den
Eingängen und Ausgängen des Schaltkreises ist. Ein Σd-Schaltkreis (bzw. Πd-
Schaltkreis) ist ein Schaltkreis mit alternierender Tiefe d und einem ODER-
Gatter (bzw. UND-Gatter) am Ausgang. Die Polynom-Funktion
POLY (q, s) wurde von Andreev [2] eingeführt. Sie ist auf q2 Variablen de�-
niert. Wir beweisen Unkomprimierbarkeit auch für monotone Σ4-Schaltkreise,
die gewisse Funktionen berechnen, und erhalten das folgende Korollar.

Korollar 7.7. Wenn s ≤ √
q/2, dann muss jeder monotone Σ4-Schaltkreis für

POLY (q, s) mindestens qs − 1 ODER-Gatter haben (genauso viele wie die dis-
junktive Normalform dieser Funktion).

Unsere Konstruktion im Beweis von Satz 6.1 liefert einen Π3-Schaltkreis. Da-
her legt Korollar 7.7 nahe, dass es schwieriger ist, eine obere Schranke für solche
Polynom-Funktionen zu beweisen, als es für die Clique-Funktion ist. Es ist nicht
einmal klar, ob diese schwierigen Polynom-Funktionen durch uneingeschränkte
Schaltkreise berechnet werden können, die kleiner als die disjunktiven Normal-
formen sind.

Im Folgenden beschreiben wir den Aufbau dieser Arbeit.
In Kapitel 1 führen wir in das Themengebiet ein und motivieren die Frage-

stellung.
In Kapitel 2 stellen wir Turing-Maschinen und Boolesche Schaltkreise als Re-

chenmodelle vor. Wir erläutern den Zusammenhang zwischen der Zeitkomple-
xität von Turing-Maschinen und Schaltkreiskomplexität. Wir zeigen, dass eine
superpolynomiale untere Schranke für die Schaltkreiskomplexität einer Funktion
in NP P 6= NP impliziert. Diese Tatsache ist eine wichtige Motivation für die
Untersuchung von Schaltkreiskomplexität.
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In Kapitel 3 behandeln wir monotone Komplexität. Wir de�nieren mehrere
monotone Boolesche Funktionen, die im weiteren Verlauf der Arbeit von Bedeu-
tung sein werden. Wir führen Slice-Funktionen ein und beweisen, dass Negationen
unwichtig für ihre Berechnung sind. Diese Tatsache macht die Untersuchung mo-
notoner Komplexität besonders interessant. Danach stellen wir die Approxima-
tionsmethode vor, die zur Zeit die einzige Beweismethode für superpolynomiale
monotone untere Schranken ist. Wir wenden die Approximationsmethode auf die
Clique-Funktion und die Polynom-Funktion an. Die Resultate dieser Arbeit be-
ziehen sich hauptsächlich auf diese beiden Funktionen.

In Kapitel 4 stellen wir Branching-Programme und geordnete binäre Entschei-
dungsdiagramme vor. Während allgemeine Branching-Programme von theoreti-
schem Interesse sind, haben auch die umfangreichen praktischen Anwendungen
von geordneten binären Entscheidungsdiagrammen zu reichlich Forschung in die-
sem Bereich geführt. Wir führen multilineare Schaltkreise als eine Verallgemei-
nerung von nichtdeterministischen read-once Branching-Programmen ein.

In Kapitel 5 beweisen wir die Vereinigungsfreiheit der Clique-Funktion und
der Polynom-Funktion (welche lediglich für geeignete Parameter vereinigungsfrei
ist). Im Anschluss beweisen wir die untere Schranke für multilineare Schaltkreise
vereinigungsfreier Funktionen (Satz 5.4).

In Kapitel 6 beweisen wir die obere Schranke für CLIQUE (n, n− 1) (Satz
6.1) mit Hilfe fehlerkorrigierender Codes. Wir weiten dieses Resultat auch auf
andere Clique-Funktionen aus.

In Kapitel 7 beweisen wir die untere Schranke für monotone Σ4-Schaltkreise
und erhalten Korollar 7.7.

In Kapitel 8 führen wir Pseudo-Slice-Funktionen ein. Wir zeigen, dass die
in dieser Arbeit vorgestellten Beweismethoden für untere Schranken auch auf
gewisse Pseudo-Slice-Funktionen anwendbar sind. Unsere Beweise der unteren
Schranken für multilineare Schaltkreise und für monotone Σ4-Schaltkreise können
mit wenig Aufwand an Pseudo-Slice-Funktionen angepasst werden.

Die Resultate dieser Arbeit sind in [22, 21] verö�entlicht.
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Chapter 1

Introduction

The circuit complexity of a Boolean function is the minimal number of gates of
a circuit that computes the function. There are di�erent reasons for studying
circuit complexity. One motivation is to investigate the di�culty of recognizing
languages with general computers, e.g. the time complexity in the Turing ma-
chine model. At �rst sight, Boolean circuits and Turing machines may seem to
be unrelated. However, a Turing machine can be simulated by a series of Boolean
circuits, and time and space e�ciency of the Turing machine translates to suc-
cinctness of the circuits. As a result, it is possible to prove a lower bound on the
time complexity of a language by proving a lower bound on the circuit complexity
of an associated Boolean function. Thus, circuit complexity o�ers an approach
to the P = NP question and has therefore received much attention. However,
the best known lower bound on the complexity of general circuits for functions in
NP is only linear in the number of variables, which does not allow us to conclude
any properties of Turing machines.

Another motivation for studying circuit complexity comes from hardware de-
sign. Of course circuit complexity lower bounds are of interest when looking for
an e�cient circuit design to be implemented in silicon. But perhaps even more
important is knowledge about e�cient data structures for representing Boolean
functions in computer memory. Boolean functions need to be stored in comput-
ers to evaluate and compare them for the purpose of hardware veri�cation. For
this restricted circuit models are used that o�er e�cient algorithms for handling
them. Ordered binary decision diagrams were introduced as the �rst such circuit
model, and many other kinds of �decision diagrams� were proposed. Binary de-
cision diagrams are being applied increasingly outside of hardware design. The
importance of such data structures provides motivation for studying the com-
plexity of restricted circuit models: we would like to know which data structures
are suited for a certain application.

Until now no superpolynomial lower bounds for unrestricted Boolean circuits
are known. However, there has been considerable success in proving superpolyno-
mial lower bounds for restricted circuit models such as monotone circuits, which
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2 CHAPTER 1. INTRODUCTION

only use AND and OR gates, but no NOT gates. The method of approximations
yields superpolynomial lower bounds for monotone circuits of a number of func-
tions in NP . Also, it is known that negation is almost powerless for so-called
slice functions. A superpolynomial lower bound on the monotone complexity of a
slice function implies a lower bound of the same order on its non-monotone com-
plexity. Unfortunately, the currently available arguments for proving monotone
lower bounds seem to be incapable of yielding su�cient lower bounds for slice
functions. Therefore it is justi�ed to seek new methods for proving monotone
lower bounds.

In this thesis we make some steps in this direction. We study some circuit
models that are more restricted than monotone circuits. We prove exponential
lower bounds for these restricted circuit classes that are optimal. They state that
the circuits require exactly as many OR gates as the DNFs of the considered
functions. This means that by using these circuit types instead of DNFs, we
cannot even save a single OR gate! In other words, the DNFs are incompress-
ible when we restrict ourselves to the respective circuit classes. We regard this
incompressibility as a remarkable property of the considered functions. However,
we also give an upper bound that shows that some of these DNFs are still highly
compressible in the case of general monotone circuits.

We introduce pseudoslice functions, which are similar to slice functions. Since
no lower bound arguments applicable to slice functions are known, we suggest to
study the complexity of pseudoslice functions. The lower bound arguments that
we propose in this thesis also work for pseudoslice functions.

1.1 Organization of the Thesis

In Chapter 2 we introduce Turing machines and Boolean circuits as computational
models. We discuss the relationship between the time complexity of Turing ma-
chines and circuit complexity. We show that a superpolynomial lower bound on
the circuit complexity of a function in NP implies P 6= NP . This fact motivates
much of the research in circuit complexity.

In Chapter 3 we discuss monotone complexity. We de�ne several monotone
functions that will be of importance in the further course of the thesis. We intro-
duce slice functions and prove that negation is powerless for slice functions. This
fact makes the study of monotone complexity particularly interesting. Finally,
we present the method of approximations, which is the only method currently
available for proving superpolynomial lower bounds on monotone complexity. We
apply the method of approximations to the clique function and the so-called poly-
nomial function. The results that we present in this thesis apply mainly to these
two functions.

In Chapter 4 we introduce branching programs and ordered binary decision
diagrams. While general branching programs are of theoretical interest, the ex-
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tensive applications of ordered binary decision diagrams have motivated a lot of
research in this area. We introduce multilinear circuits as a generalization of
ordered binary decision diagrams and nondeterministic read-once branching pro-
grams. A Boolean circuit is multilinear if the inputs to each of its AND gates are
computed from disjoint sets of variables.

In Chapter 5 we introduce union-free functions. We identify two prominent
union-free functions: the clique function and the polynomial function (which
is union-free for suitable parameters). We prove an optimal lower bound for
multilinear circuits of union-free functions. This bound states that multilinear
circuits for union-free functions need just as many OR gates as the respective
DNFs of these functions, i.e. they are incompressible. Thus, multilinear circuits
are ine�cient for union-free functions, although they are adequate for many other
functions.

In Chapter 6 we show that our lower bounds for multilinear circuits cannot be
extended to unrestricted monotone circuits. We prove that cliques of size n−1 in
a n-vertex graph can be detected by monotone formulas with O (log n) OR gates.
The DNF of this clique function has n − 1 OR gates. Since the clique func-
tion is union-free, multilinear circuits for this clique function are incompressible
and require n − 1 OR gates as well. Hence, general monotone formulas for this
clique function can be much more e�cient than multilinear circuits. This is the
�rst non-trivial upper bound on the monotone complexity of the clique function.
By exploiting that this particular clique function is a projection of practically
all clique functions, we are able to show that general monotone circuits require
less OR gates than DNFs for clique functions in general. The formulas we con-
struct for proving this upper bound are Π3-formulas, i.e. they are conjunctions
of disjunctions of monoms.

In Chapter 7 we prove lower bounds for monotone circuits of bounded depth.
We show that monotone Σ4-circuits for a certain class of polynomial functions
are incompressible, i.e. they require at least as many OR gates as the DNFs of
the respective functions. The class of Σ4-circuits includes the Π3-formulas, for
which we proved the upper bound in the previous section. This means that
the polynomial functions studied in this section are in a certain sense harder to
compute than clique functions, whose monotone Π3-formulas are compressible.
We still do not know any non-trivial upper bound for the polynomial function.

In Chapter 8 we introduce pseudoslice functions. We prove that our lower
bounds for multilinear circuits and monotone Σ4-circuits also hold for certain
pseudoslice functions. The proofs we gave for our lower bounds can easily be
adapted to make them work for pseudoslices.

1.2 Contributions of the Thesis

The main contributions of this thesis are:
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1. An optimal lower bound for multilinear circuits computing the clique func-
tion (Theorems 5.4, 8.4 and Corollary 5.5)

2. An upper bound for the clique function (Theorem 6.1)

3. An optimal lower bound for monotone bounded depth circuits computing
the polynomial function (Theorem 7.6 and Corollary 7.7)

These results are published in [22, 21].



Chapter 2

Turing Machines and Circuits

In this chapter we introduce Turing machines and Boolean circuits as computa-
tional models. We discuss the relationship between the time complexity of Turing
machines and circuit complexity. We show that a superpolynomial lower bound
on the circuit complexity of a function in NP implies P 6= NP .

2.1 Turing Machines

The Turing machine is the most common model of a computer. A Turing machine
is controlled by an automaton with a �nite number of states. The Turing machine
uses a tape as memory. The tape is divided into in�nitely many cells which can
each store one symbol of a �nite alphabet. Here way adopt the convention that
the tape is in�nite in both directions. A tape head can read or write one cell at a
time. In one time step, a Turing machine reads a symbol from the tape, writes a
symbol on the tape, decides whether to move left or right on the tape and decides
which state to assume next. Formally, a Turing machine is de�ned by a 7-tuple
that determines its behavior.

De�nition 2.1. A Turing machine is a 7-tuple

(Q, Γ, B, q0, δ, qA, qR)

where

• Q is the �nite set of states,

• Γ is the �nite alphabet of symbols that can be written on the tape,

• B 6∈ Γ is the blank symbol,

• q0 ∈ Q is the initial state,

• δ : Q× {Γ ∪ {B}} 7→ Q× Γ× {L, R} is the transition function,

5



6 CHAPTER 2. TURING MACHINES AND CIRCUITS

• qA ∈ Q is the accepting state,

• qR ∈ Q is the rejecting state.

Before the computation starts, the tape holds a �nite string in Γ∗ which is
the input to the Turing machine. All tape cells that do not hold the input string
contain the blank symbol B. The tape head is positioned over the leftmost symbol
of the input string. The Turing machine is in the initial state q0.

In each computation step the transition function δ determines the behavior of
the Turing machine. The transition function is evaluated with the current state
and the symbol currently read by the tape head as arguments. The transition
function then yields the next state, the symbol to be written on the tape and
the direction in which the tape head moves. If the next state is qA, the Turing
machine halts and accepts. If the next state is qR, the Turing machine halts and
rejects. If the next state is neither qA nor qR, the computation continues.

The set of input strings for which a Turing machine M accepts is called the
language that M recognizes. The recognition of a language is a very basic kind
of computational task. Since there are only two possible outcomes � accept
and reject � we call language recognition a decision problem. It is a common
assumption that all languages that are recognizable by some physical device are
recognizable by a Turing machine. This conjecture is known as Church's hy-
pothesis. Church's hypothesis is backed up by the fact that many more general
computational models such as machines with several tapes or random access to
their memory can be simulated by Turing machines as de�ned above.

The resources that may be limited when operating a Turing machine typically
are time and space. In this chapter we will only be concerned with the time
required by a Turing machine. We return to the problem of limited space in
Section 4.1 when we discuss branching programs.

De�nition 2.2. For a function T (n), a Turing machine M is T (n) time-bounded
if the number of steps executed by M before halting is bounded by T (n) for all
input strings of length n.

We classify languages according to the time needed by the Turing machines
that recognize them. The complexity class DTIME (T (n)) consists of all lan-
guages that are recognizable by T (n) time-bounded Turing machines. An im-
portant complexity class is the class

P =
∞⋃

k=1

DTIME
(
nk
)

.

The class P consists of the languages that are recognizable in polynomial time.
The class P can be regarded as the class of problems that are decidable �e�-
ciently�. If a problem does not belong to P , the time needed to decide it is very
likely to be prohibitive for many applications.
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If we are only studying which languages are recognizable at all, it does not
matter whether we choose the Turing machine or a more general machine as our
computational model. All known computer models can be simulated by Turing
machines. The choice of the computational model does matter however when we
are studying the computational complexity of languages. Some computer models
have features that allow them to perform computations in considerably less time
steps than are required by a Turing machine as de�ned above. For example,
a random access machine or a Turing machine with several tapes can be more
e�cient because these machines can access their memory easier. However, we
note that these more e�cient computer models can be simulated by standard
Turing machines in time which is polynomial in the time required by the superior
machine. Thus, the notion of polynomial time computability is to a large extent
independent of the underlying computational model.

In order to de�ne the complexity class NP , we now introduce nondetermin-
istic Turing machines. Turing machines as de�ned above are called deterministic
because the sequence of machine con�gurations is completely determined by the
transition function. Let P (A) denote the power set of a set A.

De�nition 2.3. A nondeterministic Turing machine is de�ned by the 6-tuple

(Q, Γ, B, q0, δ, qA, qR)

where

• Q, Γ, B, q0, qA and qR have the same meaning as in the case of deterministic
Turing machines,

• δ : Q× {Γ ∪ {B}} 7→ P (Q× Γ× {L, R}) is the transition function.

The transition function of a deterministic Turing machine yields a tuple con-
taining the next state, the tape symbol to write and the direction of the tape
head. In contrast, the transition function of a nondeterministic Turing machine
yields a set of such tuples. If this set contains more than one tuple, the Turing ma-
chine can choose its transition nondeterministically. Thus, for a nondeterministic
Turing machine there typically are several sequences of machine con�gurations
that are possible for an input string. A nondeterministic Turing machine accepts
an input string if there is some permitted sequence of computations that ends
in the accepting state. The set of input strings that a nondeterministic Turing
machine M accepts is called the language that M recognizes.

De�nition 2.4. A nondeterministic Turing machine M is T (n) time-bounded
if the number of steps executed by M before halting is bounded by T (n) for all
input strings of length n.
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The complexity class NTIME (T (n)) consists of all languages that are rec-
ognizable by T (n) time-bounded nondeterministic Turing machines.

The complexity class NP is de�ned as

NP =
∞⋃

k=1

NTIME
(
nk
)

.

The class NP can be regarded as the class of problems that are veri�able in poly-
nomial time. For every string accepted by a polynomial time nondeterministic
Turing machine we can list a polynomial number of con�gurations that prove
the acceptance of the input. The class NP receives a lot of attention because
many important problems not known to be in P belong to NP . Many of these
problems of practical importance are NP -complete. It is known that if there
exists a polynomial time algorithm for an NP -complete problem, then P = NP
and all problems in NP are decidable e�ciently. This is the case because every
language in NP is polynomial time reducible to every NP -complete language.
An introduction to NP -completeness and polynomial time reductions together
with a list NP -complete problems is presented in [11].

A proof that P 6= NP would yield superpolynomial lower bounds on the
computation time needed for all of the numerous NP -complete problems. To
show that P 6= NP it is enough to prove a superpolynomial lower bound on
the computation time required by some problem in NP . Until now the question
whether P = NP has resisted all attacks. Today this problem is regarded as one
of the greatest mathematical challenges. One of the objectives of this thesis is
to explore some approaches to the P = NP question that the study of Boolean
circuits o�ers.

2.2 Boolean Circuits and Functions

We now turn to the Boolean circuit as a computational model. Unlike Turing
machines, Boolean circuits process an input of �xed size. Boolean circuits operate
on values that belong to the set B = {0, 1}. A Boolean function is a function
that maps a Boolean vector Bn to B. While Turing machines serve as a high-level
model of a computer, a Boolean circuit can be regarded as a low-level model of a
hardware component. Boolean circuits have no notion of computation time. The
computation of a Boolean circuit is imagined to be completed instantaneously. A
Boolean circuit consists of a collection of gates. Gates compute a simple function
of their input, which is a tuple of bits in B. In this thesis we will only be concerned
with circuits that consist of AND, OR and NOT gates. Sometimes we will also
introduce gates that yield one of the constant values 0 and 1 in order to simplify
an argument.

A NOT gate computes a negation, i.e. it simply �ips its input bit. We denote
the negation of x by ¬x. An AND gate with inputs x, y ∈ B computes the value
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x ∧ y, called the conjunction of x and y. An OR gate with inputs x, y ∈ B
computes the value x ∨ y, called the disjunction of x and y. The operations ∧
and ∨ are de�ned as follows:

x y x ∧ y x ∨ y

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

De�nition 2.5. A Boolean circuit is a directed acyclic graph. There are two
disjoint sets of nodes: the inputs and the gates. Every gate is labelled with its
type (AND, OR, NOT, 0 or 1).

The number of edges entering a node is called the fanin of the vertex. The
fanin of an input is 0. The fanin of a gate depends on its type and is between 0
and 2. The number of edges leaving a node is called the fanout of the vertex. A
circuit whose gates have a fanout of at most 1 is called a formula. Nodes with
fanout 0 are called output nodes of the circuit.

We now show how to associate a Boolean circuit with n inputs and one output
with a Boolean function of n variables that maps Bn to B. We associate such a
function with every node of the circuit. We start with the inputs of the circuit
and work ourselves bottom-up through the circuit up to the output. Every input
of the circuit corresponds to a variable xi and is associated with the respective
projection πi : Bn 7→ B. An AND gate w whose predecessors are u and v with
functions fu and fv, respectively, is associated with the function

fw (x1, . . . , xn) = fu (x1, . . . , xn) ∧ fv (x1, . . . , xn) .

We handle gates computing other operations in an analogous manner. The func-
tion computed by the circuit is the function associated with the output node.

x y

¬ ¬∨

∨

∧

This circuit with inputs x and y com-
putes their Exclusive OR x ⊕ y =
(x ∨ y) ∧ (¬x ∨ ¬y).

Figure 2.1: Example of a Boolean circuit
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A resource that may be limited when dealing with Boolean circuits is the
amount of gates that are available. We may not be able to handle circuits that
become too large. The size of a circuit is the number of gates used by the circuit.

De�nition 2.6. The combinational complexity of a Boolean function f is the
number of gates used by the circuits for f that use as few gates as possible.

We denote the combinational complexity of a function f by C (f).
It is not a signi�cant restriction if we only allow negations to occur directly at

the inputs of a circuit. Then negations can only be applied to variables. A circuit
with this restriction is called a standard circuit. The following lemma shows that
standard circuits are almost as e�cient as unrestricted circuits.

Lemma 2.7. If the function f can be computed by a Boolean circuit with m
gates, then f can be computed by a standard circuit with no more than 2m gates.

Proof. Let S be an unrestricted circuit for f . We derive a standard circuit S ′ for
f from S. For every node g of S, which computes some function fg, we have two
nodes g1 and g2 in S ′. We choose the type of g1 and g2 and wire them so that
they compute the functions fg1 = fg and fg2 = ¬fg, respectively.

Let g be an AND gate which is fed from the nodes h and j. The gate g1

can also be an AND gate, fed from h1 and j1. For setting up g2, we exploit De
Morgan's Law ¬ (x ∧ y) = ¬x ∨ ¬y and make g2 an OR gate which is fed from
h2 and j2.

Let g be an OR gate which is fed from the nodes h and j. The gate g1 can also
be an OR gate, fed from h1 and j1. For setting up g2, we exploit De Morgan's
Law ¬ (x ∨ y) = (¬x)∧ (¬y) and make g2 an AND gate which is fed from h2 and
j2.

If g is an input node, i.e. a variable, we let g1 be the same variable and g2 be
a negation gate that negates this variable.

If g is a negation gate fed from node h, we identify g1 with h2 and h2 with
h1. We see now that S ′ is in fact a standard circuit if we follow these rules for
the construction of S ′. Through a bottom-up induction it is easy to see that the
gates of S ′ compute the intended functions.

We now give some preliminaries concerning Boolean functions. A literal is a
variable or a negated variable. A monom is a conjunction of literals. In this thesis
we regard monoms also as sets of literals. Therefore, we can compare monoms
as we compare sets. For example, for monoms m1 and m2 we write m1 ⊆ m2

if every literal of m1 also belongs to m2. An implicant of a Boolean function f
is a monom that does not evaluate to 1 unless f does. An implicant is a prime
implicant if no new implicant can be obtained by removing variables or negated
variables from the conjunction. For a Boolean function f , we denote the set of its
prime implicants by PI (f). We call a Boolean function k-homogeneous if each of
its prime implicants consists of k literals. A disjunctive normal form (DNF) is a
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disjunction of monoms. In this thesis we always presume that a DNF is minimal,
i.e. the DNF consists of a minimal number of monoms.

2.3 Simulation of Turing Machines by Circuits

Let L ⊆ {0, 1}∗ be a language. We can associate a function f : {0, 1}∗ 7→ {0, 1}
with L as follows:

f (w) :=

{
1 for w ∈ L
0 for w 6∈ L

When we restrict f to arguments of a �xed length n, we obtain the Boolean
function fn : Bn 7→ B. We are interested in the combinational complexity of the
sequence f1, f2, . . . In this section we show that if L is in P , then the combinational
complexity of fn has an upper bound that is polynomial in n. This translation
was �rst presented in [36]. As a result, a superpolynomial lower bound on the
combinational complexity of fn means that L 6∈ P . If L is in NP , then this would
imply P 6= NP . Note that restricting the alphabet to Γ = {0, 1} hardly limits
the computational abilities of a Turing machine. A larger alphabet can simply
be encoded by words in {0, 1}∗.

De�nition 2.8. An oblivious Turing machine is a Turing machine whose tape
head position depends only on the length of the input string and the number of
completed computation steps.

To prove that Turing machines can be simulated by Boolean circuits, we �rst
have to show how to transform a given Turing machine into an oblivious Turing
machine.

Lemma 2.9. If a language L is accepted by a T (n) time-bounded Turing ma-
chine, then L is accepted by an O (T 2 (n)) time-bounded oblivious Turing machine.

Proof. We show how a general T (n) time-bounded Turing machine M1 can be
e�ciently simulated by an oblivious Turing machine M2. Let Γ1 and Γ2 be the
alphabets of M1 and M2, respectively, and let B be the blank symbol of M1. We
set Γ2 = Γ1 ∪ (Γ1 ∪ {B})× {0, 1}. M2 �rst replaces the leftmost input symbol a
by (a, 1) and every other input symbol b by (b, 0). From now on M2 only operates
with symbols in (Γ1 ∪ {B})× {0, 1} and its blank symbol. The �rst component
of pairs in (Γ1 ∪ {B}) × {0, 1} represents the symbol of the simulated machine
M1 at the same place on the tape. The second component is 1 if the head of M1

is over the corresponding tape cell and 0 otherwise.
The machine M2 keeps sweeping over its tape from left to right and back.

M2 remembers the state of M1 and the transition of M1 it has to simulate.
When M2 passes by the tape cell whose symbol has second component 1, it has
the opportunity to modify this cell and a neighbor cell in order to simulate the
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transition of M1. Every time it encounters its blank symbol by reaching the left
or the right end, it overwrites the blank symbol by (B, x), where x is either 0
or 1, depending on the head position of M1. We make M2 move right at the
beginning, and it is easy to see that it is possible for M2 to complete a transition
of M1 after returning to the leftmost non-blank symbol on its tape. Then M2

can process a second transition and so on.
After the simulation of the t-th transition of M1, M2 has n + 2t non-blank

symbols on its tape. Hence, M2 needs 2 (n + 2 (t− 1)) + 1 = 2n + 4t − 3 steps
to simulate the t-th transition of M1. In the case of a non-trivial language L we
have T (n) ≥ n, so summing up these terms for t = 1, . . . , T (n) yields a term
that is bounded by O (T 2 (n)).

The simulation of Turing machines by circuits now follows easily.

Theorem 2.10. If the language L is accepted by a T (n) time-bounded Turing
machine, then the combinational complexity of the function fn : Bn 7→ B as
de�ned above is bounded by O (T 2 (n)).

Proof. According to the Lemma, L is accepted by a TM (n) = O (T 2 (n)) time-
bounded oblivious Turing machine M . We assume that the tape cells of M are
numbered. Let pos (t, n) denote the head position after t steps and b (t, x, j) be
the contents of the j-th tape cell after t steps when x is the input string to M .
By q (t, x) we denote the state that M is in after t steps for input x.

The machine M can be simulated by successively computing the tape contents
after every computation step up to t = TM (n). To be precise, if δ1 and δ2 are
the �rst two projections of the transition function of M , we have

q (t + 1, x) = δ1 (q (t, x) , b (t, x, pos (t, n)))

b (t + 1, x, j) = b (t, x, j) if j 6= pos (t, n) , and
b (t + 1, x, pos (t, n)) = δ2 (q (t, x) , b (t, x, pos (t, n))) .

Thus, the tape contents after t steps can be determined by evaluating the tran-
sition function t times. Since the transition function is a �nite function, it has
a constant size circuit. Hence, TM (n) copies of this circuit for the transition
function su�ce, and the upper bound on the combinational complexity of fn

follows.

We conclude that a superpolynomial lower bound on the combinational com-
plexity of fn means that L 6∈ P . A more sophisticated analysis reveals that a T (n)
time-bounded Turing machine can by simulated by circuits of size
O (T (n) log T (n)) [26]. An even more careful investigation that also pays at-
tention to the constant factors is due to Schnorr [38].

To prove that P 6= NP it would su�ce to show that a series of Boolean
functions f1, f2, . . . which decides a language in NP requires circuits with a su-
perpolynomial number of gates. Such a superpolynomial lower bound on the
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combinational complexity of a function in NP would be an even more general
result than P 6= NP . While Turing machines can be simulated by circuits, a
series of Boolean functions cannot always be evaluated by a single Turing ma-
chine. The reason for this is that a Turing machine has to be based on the
same algorithm for all input lengths, whereas the circuits for a series of Boolean
functions do not have to be related to each other. This is why Boolean circuits
are called a non-uniform computational model. Although this observation may
make an approach to the P = NP question through circuit complexity seem
unnecessarily di�cult, Boolean circuits have received a lot of attention because
of their relationship to Turing machines. The so-called oracle results [3] have
presented evidence that many attempts to prove P 6= NP which are based on
Turing machines are determined to fail. Unlike Turing machines, Boolean circuits
are amenable to �combinatorial� proof methods. Researchers hoped to be able to
use combinatorial methods to derive lower bounds which were not possible with
other techniques. However, approaches to the P = NP question via Boolean
circuits have not been successful either. Until now, the best lower bound on
the combinational complexity of a function in NP is linear. Also for Boolean
circuits there have been some e�orts to systematically rule out lower bound ar-
guments which could yield the desired lower bound. The theory of natural proofs
[35] claims that all apparent and manageable combinatorial properties of Boolean
functions are incapable of implying a strong lower bound. Schnorr [39] has shown
that the unprovability of P 6= NP through a Boolean circuit lower bound is itself
unprovable in a certain sense.

In this thesis we will make some steps towards new lower bound arguments
for Boolean circuits despite all pessimistic predictions.
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Chapter 3

Monotone Circuit Complexity

Proving lower bounds on combinational complexity is very di�cult. Until now
the best lower bounds are linear in the number of variables. It is natural to �rst
develop lower bound arguments for Boolean circuits with some kind of restriction.
Monotone circuits are a class of restricted Boolean circuits for which impressive
lower bounds have been found.

De�nition 3.1. A Boolean circuit is monotone if it does not have any NOT
gates.

Monotone circuits only use AND and OR gates. They are only capable of
computing monotone functions, a proper subset of the Boolean functions. A
Boolean function f is monotone if the value assumed by f never changes from 1
to 0 when an input variable is changed from 0 to 1. The functions and circuits
studied in this thesis are usually monotone.

De�nition 3.2. The monotone complexity of a monotone function f as the size
of the smallest monotone circuits for f .

We denote the monotone complexity of a function f by C+ (f). The minimal
DNF of a monotone function is the disjunction of all the prime implicants.

In this chapter we �rst give some examples of monotone functions. Then
we explain the known results concerning the relationship between monotone and
combinational complexity. Finally, we present the so-called method of approxi-
mations. The method of approximations is, together with its variants, the only
currently available technique for proving superpolynomial lower bounds on mono-
tone complexity.

3.1 Examples of Monotone Functions

We will refer to most of these examples of monotone functions in the further
course of this thesis.

15
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Example 3.3. The threshold function T n
k of n variables assumes the value 1 if

at least k of the inputs are 1.

The following two examples are functions that test properties of graphs.

Example 3.4. The clique function CLIQUE (n, s) is a function of
(

n
2

)
variables

representing the edges of an undirected n-vertex graph G. An edge belongs to
G i� the variable for this edge is set to 1. The function CLIQUE (n, s) assumes
the value 1 i� the graph G contains a clique of s vertices.

The clique function is NP -complete. Its monotone complexity is exponential,
i.e of the order Ω

(
2nc) for some constant c. We will prove an exponential lower

bound on the monotone complexity in this chapter.
A perfect matching of a graph is a subset of its edges such that every vertex

of the graph is incident to exactly one of the edges in the subset.

Example 3.5. The logical permanent PM (n) is a function of n2 variables rep-
resenting the edges of an undirected bipartite graph G with 2n vertices. The
function PM (n) assumes the value 1 i� the graph G has a perfect matching.

A Ω
(
nlog n

)
lower bound on the monotone complexity of PM (n) is known

[33]. However, the function PM (n) is decidable in polynomial time [16] and thus
has polynomial combinational complexity.

The next function we de�ne was introduced by Andreev [2].

Example 3.6. The polynomial function POLY (q, s) has q2 variables correspond-
ing to the points in the grid GF (q) × GF (q), where q is a prime power. This
function accepts a q × q 0-1 matrix X = (xi,j) i� there is a polynomial f (z) of
degree at most s − 1 over GF (q) such that xi,f(i) = 1 for all i ∈ GF (q). These
entries xi,f(i) can be regarded as a graph of the polynomial f .

In this chapter we prove an exponential lower bound on the monotone com-
plexity of the function POLY , which is in NP .

3.2 The Relationship between Monotone and Com-

binational Complexity

While every monotone function can be computed by a monotone circuit, a non-
monotone circuit may be able to compute a monotone function more e�ciently
than a monotone circuit. In other words, the monotone complexity of a function
may be larger than its combinational complexity. The logical permanent PM (n)
is an example of a function with considerable larger monotone complexity than
combinational complexity. A Ω

(
nlog n

)
lower bound on the monotone complexity

of PM (n) is known [33]. On the other hand, this function is decidable in poly-
nomial time [16] and thus has polynomial combinational complexity. Tardos was
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able to show that the quotient of monotone and combinational complexity can
be exponential by �nding a function which exhibits such a gap [42].

Since lower bounds are easier to prove for monotone circuits than for unre-
stricted circuits, it is interesting to study functions whose monotone complexity
is not much larger than their combinational complexity. A class of functions with
this property are the slice functions.

De�nition 3.7. Let f be a Boolean function of n variables. The t-slice function
of f is the function ft = f ∧T n

t ∨T n
t+1, where T n

t is the t-th threshold function of
n variables.

Let |x| denote the number of ones in the Boolean vector x. Then an equivalent
de�nition of the t-slice f t of f is

f t (x) =


0 for |x| < t
f (x) for |x| = t
1 for |x| > t

.

The value of the slice function ft is only meaningful if its argument has exactly
t ones.

In order to show that the monotone and combinational complexity of slice
functions are close to each other, we introduce the notion of a pseudo-complement.
A monotone function h is a pseudo-complement for the variable x when computing
f if we can replace ¬x by a subcircuit for h in any standard circuit for f without
altering the function f computed by the circuit. It turns out that e�cient pseudo-
complements can be found when computing slice functions. In the sequel, we
de�ne X = {x1, . . . , xn} and Xi = X \ {xi}. Then we can write the threshold
function T n−1

t (x1, . . . , xi−1, xi+1, . . . , xn) as T n−1
t (Xi).

Theorem 3.8 ([5]). When computing the t-slice function ft (x1, . . . , xn) of
f (x1, . . . , xn), the function T n−1

t (Xi) is a pseudo-complement of the variable xi.

Proof. We distinguish three cases:
Case 1: |x| < t. Then ft (x1, . . . , xn) = 0. We have T n−1

t (Xi) = 0. Thus,
replacing ¬xi by T n−1

t (Xi) means replacing ¬xi by 0 in this case. Since we are
dealing with a standard circuit in which negations are only applied to variables,
the value computed remains 0 after this replacement is done.

Case 2: |x| = t. If xi = 0, then ¬x1 = 1 and T n−1
t (Xi) = 1 because exactly

t of the variables x1, . . . , xi−1, xi+1, . . . , xn are set to 1. If xi = 1, then ¬x1 = 0
and T n−1

t (Xi) = 0 because exactly t− 1 of the variables x1, . . . , xi−1, xi+1, . . . , xn

are set to 1. Hence, ¬xi = T n−1
t (Xi) in this case.

Case 3: |x| > t. Then ft (x1, . . . , xn) = 1. We have T n−1
t (Xi) = 1. Thus,

replacing ¬xi by T n−1
t (Xi) means replacing ¬xi by 1 in this case. Since we

are dealing with a standard circuit, the value computed remains 1 after this
replacement is done.
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Since threshold functions can be computed e�ciently, Theorem 3.8 implies
that unrestricted circuits for slice functions can be simulated e�ciently by mono-
tone circuits. We now make more precise how e�cient this simulation is. A
simple monotone circuit for the threshold function T n

k can be constructed with
O (nk) gates. Hence, we are able to compute the n pseudo-complements given by
Theorem 3.8 that we need for a slice function of n variables with O (n3) gates.
Thus, the di�erence between the monotone complexity and the combinational
complexity of a slice function of n variables is at most O (n3). As a result, a
superpolynomial lower bound on the monotone complexity of a slice function
yields a superpolynomial lower bound on its combinational complexity. A more
careful analysis reveals an even closer relationship between the monotone and
the combinational complexity of slice functions. According to Theorem 3.8, the
pseudo-complements we need to compute a t-slice function of n variables are
the vector

(
T n−1

t (X1) , . . . , T n−1
t (Xn)

)
. The best upper bound for this vector

has been given by Valiant [43]. Wegener [45] gives a shorter proof of this upper
bound.

Theorem 3.9 ([43]). The vector
(
T n−1

t (X1) , . . . , T n−1
t (Xn)

)
can be computed

by a monotone circuit with O
(
n log2 n

)
gates.

Corollary 3.10. A lower bound of ω
(
n log2 n

)
on the monotone complexity of

a slice function in n variables implies a lower bound of the same order on the
combinational complexity of this slice function.

Since threshold functions of n variables can be computed by unrestricted
circuits with O (n) gates [23], we have C (ft) ≤ C (f) + O (n). So a superlinear
lower bound on the combinational complexity of a slice function of a function f
implies a lower bound of the same order on the combinational complexity of f .

Corollary 3.11. Let f be a Boolean function of n variables. A lower bound of
ω
(
n log2 n

)
on the monotone complexity of any slice function ft of f implies a

lower bound of the same order on the combinational complexity of f .

We have shown how to derive a lower bound on combinational complexity
from a lower bound on monotone complexity. On the other hand, it is easy to see
that a high lower bound on the combinational complexity of a function implies a
high lower bound on the complexity of one of its slices. Recall that f (x) = ft (x)
when |x| = t. So to recover a function from its slice functions, it is enough to
count the number of input bits which are one and then select the appropriate
slice function using a multiplexer. Counting and multiplexing can be achieved
using O (n) gates if we are dealing with a function of n variables. As a result we
obtain

C (f) = O

(
n +

n∑
t=0

C (ft)

)
.
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We conclude that at least one of the slices ft of f has a combinational complexity
of C (ft) = Ω (C (f) /n). In some cases it is possible to single out a particular
slice that is known to be �hard�.

Theorem 3.12 ([10]). The
(

n
2

)
/2-slice of the function CLIQUE (n, s) is NP-

complete.

3.3 The Method of Approximations

The method of approximations is up to now the only method available for proving
superpolynomial bounds on monotone complexity. The method of approxima-
tions was introduced by Razborov [32]. Some other methods have been proposed
[2, 13, 18], but these are just di�erent variants of the method of approximations.
Some e�orts have been made to present the method of approximations in a way
that is easier to understand [4, 18]. In this section we describe the method of
approximations following the older approach of Alon and Boppana [1], thereby
allowing a few simpli�cations. This traditional variant of the method of approx-
imations is also presented in the monographs of Wegener [46] and Dunne [9].

In an ordinary monotone circuit, an AND or OR gate is used to create a new
function from the functions that correspond to the inputs to the gate. When ap-
plying the method of approximations, we consider the �approximator circuits� we
obtain from monotone circuits by replacing ordinary gates by lattice operations.
A lattice is an algebra with two operations, u and t (called �meet� and �join�,
respectively), that are idempotent, commutative and associative and that satisfy
the absorption law (a t a u b = a). As the elements of our lattice K, we choose
a subset of the monotone Boolean functions from Bn to B. Thus, the functions
at the gates of the approximator circuit can often only be approximations of the
functions computed at the gates of the original circuit. We identify a Boolean
function f : Bn 7→ B with the set f−1 (1) of Boolean vectors that it maps to 1.
We set A (f) := {v ∈ Bn | f (v) = 1}. Hence, the lattice elements we deal with are
subsets of Bn. We choose the lattice operations in a way that makes them yield
the best possible approximation in a certain sense. For A, B ∈ K, we de�ne AuB
to be the maximal element of {C ∈ K |C ⊆ A ∩B} with respect to inclusion. We
de�ne A t B to be the minimal element of {C ∈ K |C ⊇ A ∪B}. To guarantee
that these sets are nonempty, we require the empty set and Bn to belong to the
lattice. Thus, the approximate function A u B rejects all inputs that the exact
function A ∩ B rejects. Similarly, the approximate function A t B accepts all
inputs that the exact function A ∪ B accepts. The method of approximations
relies on an analysis of the errors

δu (A, B) = (A ∩B) \ (A uB)

and
δt (A, B) = (A tB) \ (A ∪B)
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that are introduced by the lattice operations.
The idea is to choose a lattice that can approximate monotone functions with

medium accuracy. This allows us to derive a lower bound on the number of
inputs for which the function computed by the approximator circuit di�ers from
the function we would like to actually compute. On the other hand, we are able
to �nd an upper bound on the size of the error introduced by a single lattice
operation. From these two bounds we can derive a lower bound on the size of
the circuit.

In order to be able to replace ordinary gates by lattice operations, we need
to have suitable lattice elements that correspond to variables. Therefore we
restrict ourselves to legitimate lattices. A legitimate lattice is a lattice K such that
A (x1) , . . . , A (xn) ∈ K. As already mentioned above, we require that ∅ ∈ K and
Bn ∈ K. We can bound the monotone complexity of a function by its distance to
a legitimate lattice K. For a monotone function f and a legitimate lattice K, the
distance % (f,K) is the minimum t such that there are A, A1, B1, . . . , At, Bt ∈ K
satisfying

A ⊆ A (f) ∪
t⋃

i=1

δt (Ai, Bi) (3.1)

and

A (f) ⊆ A ∪
t⋃

i=1

δu (Ai, Bi) . (3.2)

This de�nition is inspired by the idea of turning monotone circuits into approxi-
mator circuits. The pairs (A1, B1) , . . . , (At, Bt) of sets are thought of as inputs to
lattice operations of the approximator circuit, and A is supposed to be the set at
the output of the approximator circuit. Equation (3.1) expresses that all Boolean
vectors accepted by the function computed by the approximator circuit are ac-
cepted by the function computed by the original circuit or have been a�ected
by an error introduced by a lattice operation. Similarly, equation (3.2) re�ects
that all Boolean vectors rejected by the function computed by the approximator
circuit are rejected by the function computed by the original circuit or have been
a�ected by an error. By observing that we can turn every monotone circuit into
an approximator circuit by replacing Boolean operations with lattice operations,
we can prove the following theorem.

Theorem 3.13 ([32, 1]). For every monotone function f and every legitimate
lattice K, we have C+ (f) ≥ % (f,K).

The proof of this theorem and other proofs omitted in this section are given
in the appendix.

The essential e�ort that has to be made when applying the method of ap-
proximations is to choose a lattice that provides for approximations of medium
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accuracy. Consider the legitimate lattice K = P (Bn) which contains every func-
tion, so approximation is not necessary. Every monotone function has distance
0 to this lattice. As an example of a lattice that only allows very poor approxi-
mations, consider the legitimate lattice K that only has the elements ∅, Bn and
A (x1) , . . . , A (xn). It is easy to see that every monotone function has a distance
of at most n (n− 1) to K.

3.3.1 A Lower Bound for the Clique Function

For a �xed number r, we say the sets W1, . . . ,Wr imply the set W if the contain-
ment Wi ∩Wj ⊆ W holds for all pairs i, j such that 1 ≤ i < j ≤ r. We denote
this relationship by W1, . . . ,Wr ` W . If A is a set of sets and W is a set, we say
that A implies W (A ` W ) i� there exist W1, . . . ,Wr ∈ A that imply W . We
call a set A ⊆ U a closed subset of U i� every set W ∈ U that is implied by A
belongs to A.

We are now ready to describe the lattice we choose for proving the lower
bound for the clique function. Let V be the set of vertices of the graph on which
we detect cliques. We have n variables x1, . . . , xn for each of the possible edges
of this graph. For a set A of subsets of V , we de�ne dAe as the set of all graphs
on V that contain a clique on some W ∈ A. Each such graph is represented
by a characteristic vector in Bn. Thus, we can regard a set dAe as a monotone
Boolean function that maps Bn to B. We choose our lattice as a certain set of
such functions dAe. First, let V (l) = {W ⊆ V | |W | ≤ l} be the set of all subsets
of V with size at most l. Then we can choose our lattice as

K (r, l) := {dAe |A is a closed subset of V (l)} .

We de�ne the closure A∗ of a set A as the smallest subset of V (l) that contains
A and is closed. The lattice operations are given by dAetdBe = d(A ∪B)∗e and
dAeudBe = d(A ∩B)e. If the variable x represents the edge that is incident with
the vertices u and v, then A (x) = d{{u, v}}e. Since {{u, v}} is a closed subset
of V (l), we have A (x) ∈ K (r, l). Hence, the lattice K (r, l) is a legitimate lattice.

In order to analyze the approximation properties of our lattice, we need to
�rst prove a combinatorial lemma. This lemma will also be useful for studying
other lattices.

We say that a set of sets F has property P (r, k) if
(i) every set W ∈ F has cardinality at most k, and
(ii) there are no (not necessarily distinct) W, W1, . . . ,Wr ∈ F and U ( W

such that Wi ∩Wj ⊆ U for all 1 ≤ i < j ≤ r (so F ` U).
By h (r, k) we denote the maximum possible cardinality of a set F that has

property P (r, k).

Lemma 3.14. For all r ≥ 2 and k ≥ 0, we have h (r, k) ≤ (r − 1)k.
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Corollary 3.15. Let A be a closed subset of V (l). Then for all k there are at
most (r − 1)k minimal elements (with respect to containment) of A of cardinality
at most k.

Proof. It is easy to see that all minimal elements of A with cardinality at most k
form a set with property P (r, k). The corollary then follows directly from Lemma
3.14.

In order to compare the di�erence between the output of the approximator
circuit and the original circuit with the errors introduced by individual lattice
operations, we restrict our attention to inputs to the circuits that we call test
graphs. Positive test graphs are inputs to the circuit that the function we are
studying maps to 1. Negative test graphs are inputs that are mapped to 0. Test
graphs are Boolean vectors in Bn. A u-operation may introduce new errors that
a�ect positive test graphs. An approximating lattice element resulting from a
u-operation may map some positive test graphs to 0 even if these test graphs
are mapped to 1 by both operands. Conversely, we study the approximating
capabilities of the t-operation for negative test graphs. We attach a probability
distribution to our negative test graphs, whereas for our purposes this is not
necessary for positive test graphs. We denote the set of positive test graphs by
E+. Concerning the positive test graphs E+ ⊆ Bn, we are interested in �nding
an upper bound for the maximum error

δ+ (r, l) := max
A,B∈K(r,l)

|δu (A, B) ∩ E+|

which can be traced to a single lattice operation.
If we are detecting cliques of size s, we choose as positive test graphs E+

simply all cliques of size s. Further we assume that we are dealing with graphs
with m vertices. Using the previous corollary, this leads to the following bound
on δ+ (r, l).

Lemma 3.16. We have δ+ (r, l) ≤ (r − 1)2l ·
(

m−l−1
s−l−1

)
.

Proof. By de�nition, for lattice elements M, N ∈ K (r, l) we have

δu (M, N) = (dAe ∩ dBe) \ (dAe u dBe)
= (dAe ∩ dBe) \ (dA ∩Be)

for closed subsets A, B ⊆ V (l). Consider a graph G in dAe ∩ dBe. There must
be minimal elements W1 ∈ A and W2 ∈ B such that G has cliques on both
of the vertex sets W1 and W2. If |W1 ∪W2| ≤ l, then G is in dA ∩Be, so
G 6∈ δu (M, N). According to Corollary 3.15, there are at most (r − 1)l minimal
elements in each A and B. Hence, there are at most (r − 1)2l combinations of
such minimal elements W1 ∈ A and W2 ∈ B. We only need to consider such
a combination if |W1 ∪W2| ≥ l + 1, and in this case at most

(
m−l−1
s−l−1

)
s-cliques

(positive test graphs) have cliques on W1 ∪W2. Altogether, there can be at most
(r − 1)2l ·

(
m−l−1
s−l−1

)
positive test graphs in δu (M, N).
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Our next step is to study the approximation accuracy of our lattice with
negative test graphs. As negative test graphs, we choose (s− 1)-partite graphs.
We attach a probability distribution to the negative test graphs. We generate a
(s− 1)-partite graph randomly by coloring each vertex independently with one
of s−1 colors, with each choice of color being equally likely. The random variable
we will work with is a random function O that assigns to each of the m vertices
one of s− 1 colors. The graph we obtain from such a coloring is constructed by
adding an edge between two vertices i� the colors assigned to these vertices are
distinct. We denote this graph by G (O). It is easy to see that such a graph does
not contain any s-clique.

When considering negative test graphs, we are interested in the maximum
probability

δ− (r, l) := max
A,B∈K(r,l)

P [G (O) ∈ δt (A, B)]

that the randomly chosen negative test graph G (O) is a�ected by an error that
is introduced by some individual t-operation. In order to study the properties of
the sets δt (dAe , dBe) = d(A ∪B)∗e \ (dAe ∪ dBe), we imagine that the closure
(A ∪B)∗ is constructed from A∪B by successively adding new sets W1, . . . ,Wp.
Such a set Wi is an arbitrary set such that A∪B∪{W1, . . . ,Wi−1} ` Wi. In order
to bound the probability δ− (r, l), we study how random colorings behave with
respect to such implications of new sets Wi. We call a set W of vertices properly
colored by a random coloring O if each vertex in W has a di�erent color.

Lemma 3.17. Let A ⊆ V (l), A ` W and O be a random (s− 1)-coloring of all
vertices. Then

P [W is properly colored by O and no set in A is properly colored by O]

≤

(
1− (s− 1) (s− 2) · · · (s− l)

(s− 1)l

)r

.

Using the previous lemma, we can give a bound on δ− (r, l).

Lemma 3.18.

δ− (r, l) ≤ ml

(
1− (s− 1) (s− 2) · · · (s− l)

(s− 1)l

)r

.

Proof. We have

δt (dAe , dBe) = d(A ∪B)∗e \ (dAe ∪ dBe) = d(A ∪B)∗e \ dA ∪Be .

Thus, a graph in δt (dAe , dBe) has a clique on a vertex set that is in (A ∪B)∗

but not in A∪B. Therefore we are going to study the probability that a random
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graph G (O) has a clique on some set in (A ∪B)∗ but not on any set in A ∪ B.
We imagine that the closure (A ∪B)∗ is constructed from A ∪B by successively
adding new sets W1, . . . ,Wp, where A ∪ B ∪ {W1, . . . ,Wi−1} ` Wi. A random
graph G (O) is in dCe i� some vertex set in C is properly colored by the coloring
O. Using Lemma 3.17, we observe that the probability that a random graph
G (O) has a clique on some set in A ∪ B ∪ {W1, . . . ,Wi} but not on any set in
A ∪B ∪ {W1, . . . ,Wi−1} is at most(

1− (s− 1) (s− 2) · · · (s− l)

(s− 1)l

)r

.

The number p of sets added is at most |V (l)| ≤ ml. The bound on δ− (r, l)
follows.

Having derived upper bounds on δ+ (r, l) and δ− (r, l), we are now ready to
prove the lower bound on the monotone complexity of the clique function.

Theorem 3.19. For s ≥ 16, we have

C+ (CLIQUE (m, s)) ≥ 1

3

(
m

32s2 log2 m

)√s

.

Proof. We choose l = d
√

se and r = d4 d
√

se log me. Our goal is to show

% (CLIQUE (m, s) ,K (r, l)) ≥ 1

3

(
m

32s2 log2 m

)√s

.

The lower bound for C+ (CLIQUE (m, s)) then follows with Theorem 3.13. Let
t be the distance % (CLIQUE (m, s) ,K (r, l)). We refer to the lattice elements
A, A1, B1, . . . , At, Bt used in the equations (3.1) and (3.2).

Case 1: The lattice element A = dCe is not the empty set. We investigate the
probability that a random graph G (O) is in A. Let W be some vertex set in C.
There are (s− 1)|W | equally likely possible combinations of colors that a random
coloring O can assign to the vertices of W . If O properly colors the vertices of
W , then G (O) certainly is in A. There are (s− 1) (s− 2) · · · (s− |W |) proper
colorings of the vertices in W . With |W | ≤ l these observations give us

P [G (O) ∈ A] ≥ (s− 1) (s− 2) · · · (s− |W |)
(s− 1)|W |

≥ (s− 1) (s− 2) · · · (s− l)

(s− 1)l

=
(s− 1) (s− 2) · · · (s− d

√
se)

(s− 1)d
√

se .
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We analyze this term further. We have

(s− 1) (s− 2) · · · (s− d
√

se)

(s− 1)d
√

se =
s− 1

s− 1
· s− 1− 1

s− 1
· · · s− 1− (d

√
se − 1)

s− 1

=

(
1− 1

s− 1

)(
1− 2

s− 1

)
· · ·
(

1− d
√

se − 1

s− 1

)

≥ 1− 1

s− 1

d√se−1∑
i=1

i

= 1− d
√

se (d
√

se − 1)

2 (s− 1)

≥ 1− s +
√

s

2 (s− 1)

Since we are assuming s ≥ 16, we have s +
√

s ≤ 4
3
(s− 1), which yields

P [G (O) ∈ A] ≥ 1/3. From equation (3.1) we conclude that

P [G (O) ∈ A] ≤ P [G (O) ∈ A (f)] + t · δ− (r, l) .

Since the graph G (O) is a negative test graph, P [G (O) ∈ A (f)] = 0, so t ≥
P [G (O) ∈ A] /δ− (r, l). Using the inequality

(s− 1) (s− 2) · · · (s− d
√

se)

(s− 1)d
√

se ≥ 1/3

we just proved above, we can further analyze the bound on δ− (r, l) given in
Lemma 3.18:

δ− (r, l) ≤ md
√

se
(

1− (s− 1) (s− 2) · · · (s− d
√

se)

(s− 1)d
√

se

)d4d√se log me

≤ md
√

se
(

2

3

)d4d√se log me

≤ md
√

sem−2d√se

= m−d√se .

This directly leads to the desired bound

t ≥ P [G (O) ∈ A]

δ− (r, l)
≥ 1

3
md

√
se ≥ 1

3

(
m

32s2 log2 m

)√s

,

which �nishes case 1.
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Case 2: The lattice element A is the empty set. For this case we turn to our
positive test graphs. From equation (3.2) we conclude that

|E+| ≤ |A ∩ E+|+ t · |δ+ (r, l)| .

Since A is empty, |A ∩ E+| = 0, so t ≥ |E+| / |δ+ (r, l)|. There are
(

m
s

)
possible

s-cliques in a graph with m vertices, so |E+| =
(

m
s

)
. Using the bound on δ+ (r, l)

from Lemma 3.16, we obtain

t ≥
(

m
s

)
(r − 1)2l ·

(
m−l−1
s−l−1

)
=

m! (s− l − 1)!

(m− l − 1)!s! (r − 1)2l

≥ ml+1

sl+1 (r − 1)2l

≥
(

m

s (r − 1)2

)√s

.

Since s ≥ 16, we have d
√

se2 ≤ 2s, so (r − 1)2 ≤ 32s log2 m. This gives us

t ≥
(

m

32s2 log2 m

)√s

.

This �nishes case 2 and the proof of the theorem.

3.3.2 A Lower Bound for the Polynomial Function

Now we show how to apply the method of approximations to the polynomial
function POLY (q, s). The polynomial function can be handled in a similar way
as the clique function. We identify the variables of the polynomial function with
elements of GF (q)×GF (q). We choose a lattice that consists of functions that
are disjunctions of su�ciently short monoms. Let

E (l) := {F ⊆ GF (q)×GF (q) | |F | ≤ l}

be the set of monoms of length at most l. For a subset A of E (l), we de�ne dAe
as the set of all b ∈ Bq2 for which there is some F ∈ A such that all entries of b
that correspond to elements of F are 1. When regarded as a Boolean function,
dAe is the disjunction of all monoms in A. For some �xed number r, we take the
de�nition of the implication W1, . . . ,Wr ` W from our treatment of the clique
function. We also use the same notion of a closed subset. Now we are ready to
de�ne the lattice that we use for the polynomial function:

K (q, r, l) := {dAe |A is a closed subset of E (l)}
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We de�ne the closure A∗ of a set A as the smallest subset of E (l) that contains
A and is closed. The lattice operations are given by dAe t dBe = d(A ∪B)∗e
and dAe u dBe = d(A ∩B)e. If the variable x represents the element (g1, g2) ∈
GF (q)×GF (q), then A (x) = d{{(g1, g2)}}e. Since {{(g1, g2)}} is a closed subset
of E (l), we have A (x) ∈ K (q, r, l). Hence, the lattice K (q, r, l) is a legitimate
lattice.

Also for the polynomial function we have to choose a set of positive test graphs
E+ and a distribution of a random negative test graph G. Since the argument of
the polynomial function, a q×q 0-1 matrix, can be regarded as the representation
of a graph, it is justi�ed to speak of test graphs in this context too. We proceed
by proving upper bounds on

δ+ (q, r, l) := max
A,B∈K(q,r,l)

|δu (A, B) ∩ E+|

and
δ− (q, r, l) := max

A,B∈K(q,r,l)
P [G ∈ δt (A, B)] .

As the positive test graphs E+, we choose all Boolean matrices (bi,j) for which
there is a polynomial f of degree at most s− 1 such that bi,f(i) = 1 i� f (i) = i.

Lemma 3.20. If r ≤ q/3 + 1, then

δ+ (q, r, l) ≤ 3qs−d(l+1)/2e (r − 1)d(l+1)/2e .

The next step is to �nd a bound on δ− (q, r, l). As negative test graph G, we
choose the Boolean vector we obtain by setting every entry independently to 1
with probability 1 − ε. Note that this random test graph may well be accepted
by the function POLY (q, s). We can deal with this by bounding the probability
that the random vector G is accepted. For every polynomial f , the probability
that all the entries corresponding to some (g, f (g)) for g ∈ GF (q) are set to 1 is
(1− ε)−q since there are q such entries. Since there are qs polynomials of degree
at most s− 1, we obtain

P [G ∈ A (f)] ≤ qs (1− ε)−q ≤ qse−εq .

We choose ε = (s ln q + ln 2) /q. This gives us P [G ∈ A (f)] ≤ 1/2.
Using our choice of negative test graph, we obtain the following bound on

δ− (q, r, l).

Lemma 3.21. We have
δ− (q, r, l) ≤ q2l (εl)r .

We are now ready to give the lower bound for the polynomial function.

Theorem 3.22. For s ≤ 1
12

√
q/ ln q, we have

C+ (POLY (q, s)) = qΩ(s) .
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Proof. We choose l = s and r = d4s ln qe. This makes r− 1 ≤ 4s ln q ≤ q/3. Our
goal is to show

% (POLY (q, s) ,K (q, r, l)) = qΩ(s) .

The lower bound for C+ (POLY (q, s)) then follows with Theorem 3.13. Let
t be the distance % (POLY (q, s) ,K (q, r, l)). We refer to the lattice elements
A, A1, B1, . . . , At, Bt listed in equations (3.1) and (3.2).

Case 1: A 6= Bq2. From equation (3.2), we know that

t ≥ |E+| − |A ∩ E+|
δ+ (q, r, l)

. (3.3)

We would like to estimate |A ∩ E+|. Let A = dCe. Since A 6= Bq2 , every set
F ∈ C has at least one element. According to Corollary 3.15, the set C has
at most (r − 1)k minimal elements of cardinality k. As we show in the proof of
Lemma 3.20, every set F ∈ C with cardinality k can contribute to at most qs−k

positive test graphs in A. This allows us to estimate the number of positive test
graphs in A as follows:

|A ∩ E+| ≤
l∑

k=1

(r − 1)k qs−k

= qs

l∑
k=1

(
r − 1

q

)k

< qs

∞∑
k=1

(
r − 1

q

)k

≤ qs

∞∑
k=1

(
1

3

)k

= qs/2

Inserting this estimation together with |E+| = qs and the bound on δ+ (q, r, l) of
Lemma 3.20 into (3.3), we obtain

t ≥ qs/2

3qs−d(s+1)/2e (r − 1)d(s+1)/2e

=
1

6

(
q

(r − 1)

)s/2

·
(

q

(r − 1)

)d(s+1)/2e−s/2

≥ 1

6

(
q

(r − 1)

)s/2

≥ 1

6

(
q

4s ln q

)s/2

= qΩ(s) .



3.3. THE METHOD OF APPROXIMATIONS 29

This �nishes case 1.
Case 2: A = Bq2. From equation (3.1), we know that for the random test

graph G

t ≥ P [G ∈ A]− P [G ∈ A (f)]

δ− (q, r, l)
.

When we introduced the random test graph G, we already noted that P [G ∈ A (f)] ≤
1/2 for our choice ε = (s ln q + ln 2) /q. Since in the case A = Bq2 we have
P [G ∈ A] = 1, the bound of Lemma 3.21 gives us

t ≥ 1/2

q2l (εl)r .

For s ≥ 1 we have ε ≤ (2s ln q) /q, and then we obtain

t ≥ 1

2q2s

(
q

2s2 ln q

)4s ln q

.

Since we assumed s ≤ 1
12

√
q/ ln q, we have 2s2 ln q ≤ q/2, so using ln q >

(2/3) log q we obtain

t ≥ 1

2q2s
24s ln q

>
28s log q/3

2q2s

=
1

2
q2s/3 .

This �nishes case 2 and the proof of the theorem.
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Chapter 4

Branching Programs and Ordered
Binary Decision Diagrams

In this chapter we introduce branching programs and ordered binary decision
diagrams. While general branching programs are of theoretical interest, the ex-
tensive applications of ordered binary decision diagrams have motivated a lot of
research in this area. We introduce multilinear circuits as a generalization of
ordered binary decision diagrams and nondeterministic read-once branching pro-
grams. In the further course of this thesis, we will deal with multilinear circuits
as the most general one of these computational models.

4.1 Branching Programs

Branching programs are a model for computation that proceeds over time. Like
Boolean circuits, branching programs read input data of �xed size. A branching
program assumes a state that controls the computation. Each state transition
is determined by the value of an input variable. The computation is terminated
when an accepting or rejecting state is reached.
De�nition 4.1. A deterministic branching program is a directed acyclic graph
with one source (a node without predecessor) and two sinks (nodes with fanout
0). All non-sink nodes, also referred to as inner nodes, have fanout two. Every
inner node is labeled by a Boolean input variable. The edges leaving a node
labelled by the variable x are labeled by x and ¬x. The sinks are labelled with
0 or 1 (�rejecting� or �accepting�, respectively).

The computation of a branching program starts at the source. At every node,
which represents the current state, the variable the node is labelled with is tested.
Then the edge which is consistent with the value of the variable is followed. The
computation terminates when an accepting or rejecting state is reached.

Deterministic branching programs are an interesting computational model for
studying the space required by Turing machines to accept certain languages. In

31
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order to study the space complexity of languages, we turn to the model of o�-line
Turing machines. An o�-line Turing machine is a Turing machine with two tapes
and two tape heads. The machine operates simultaneously on both tapes. At
every transition, it processes the symbols read by both tape heads and decides in
which directions to move the tape heads. One of the tapes is designated as the
input tape, the other tape is the storage tape. An o�-line Turing machine may
only read its input tape and is not allowed to change its contents. The machine
may only read the input string and the two neighboring blank symbols, it may
not scan areas on the input tape that are not occupied by the input string.

De�nition 4.2. For a function S (n), an o�-line Turing machine M is S (n)
space-bounded if M scans at most S (n) cells on its storage tape for all input
strings of length n.

The complexity class DSPACE (S (n)) consists of all languages that are rec-
ognizable by S (n) space-bounded Turing machines. Using o�-line Turing ma-
chines for de�ning space complexity enables us to have a sensible notion of sub-
linear space complexity.

We saw in Section 2.3 that Boolean circuits can simulate Turing machines
and that there is a close link between the time complexity of languages and the
circuit complexity of the associated functions. It is easy to see that branching
programs can also simulate Turing machines in a straightforward way, and it is
possible to derive a relationship between the space required by a Turing machine
and the number of nodes of the corresponding branching program. The following
theorem states the simulation result. A more detailed summary of the relation-
ships between Turing machines and branching programs can be found in [29] or
[34].

Theorem 4.3. If the language L ⊆ {0, 1}∗ is accepted by a S (n) = Ω (log n)
space-bounded o�-line Turing machine, then the series f1, f2, . . . of Boolean func-
tions de�ned by f−1

n (1) = L ∩ {0, 1}n is accepted by deterministic branching
programs with 2O(S(n)) nodes.

Proof. A con�guration of an o�-line Turing machine consists of the current state,
the positions of both of the tape heads and the contents of the storage tape. Since
S (n) = Ω (log n), the number of cells used on the storage tape is the dominating
factor which determines the number of con�gurations, which leads to 2O(S(n))

con�gurations. For every possible con�guration of an o�-line Turing machine M ,
we introduce a corresponding inner node of the branching program we construct
for M . We label every inner node by the variable which corresponds to the
symbol of the input tape which is scanned in the con�guration associated with
this node. We attach two outgoing edges to every inner node that lead to the
con�gurations the machine assumes depending on the input symbol read. It is
easy to see that we do not have to do much work in order to deal with blank
symbols in the input.
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As a consequence of Theorem 4.3, a superpolynomial lower bound on the
number of nodes of deterministic branching programs for a function in NP would
imply DSPACE (log n) 6= NP . However, the best known lower bounds are of
the order Ω

(
n2/ log2 n

)
. These bounds are still better than any bounds that are

known on the combinational complexity of any function in NP . As for Boolean
circuits, there has been some success studying restricted versions of the model.
A type of restricted branching program that has been heavily studied is the read-
once branching program.

De�nition 4.4. A read-once branching program is a branching program in which
every input variable occurs at most once on every path from the source to a sink.

We will return to read-once branching programs in the next section. Lower
bounds have also been proved for branching programs that can read each variable
more than once, but not an unlimited number of times [25, 6, 17].

It is natural to de�ne a nondeterministic variant of branching programs in a
similar way as for other computational models. This leads to a more general type
of branching program.

De�nition 4.5. Nondeterministic branching programs are de�ned like determin-
istic branching programs, except that their inner nodes are not labelled and have
arbitrary fanout, and that edges may be labelled with arbitrary literals. Unla-
beled edges are also allowed, and there does not have to be a rejecting sink.

We say a path in a branching program is consistent with a certain input if its
edges are only labelled by literals that assume the value �true� (unlabeled edges
are also allowed). A nondeterministic branching program accepts an input i�
there is some path from its source to the accepting sink that is consistent with
the input.

It is easy to see that Boolean circuits are at least as e�cient as nondetermin-
istic branching programs, i.e. that a function that can be computed by a non-
deterministic branching program with few edges can be computed by a Boolean
circuit with few gates.

Theorem 4.6. If a function f : Bn 7→ B can be computed by a nondeterministic
branching program with k nodes and l edges, then f can be computed by a Boolean
circuit with l − k OR gates and l AND gates.

Proof (Sketched in [29]). The idea is to associate with every node v of the branch-
ing program a gate gv of the circuit. Then the value computed at the gate gv

should be 1 i� there is a consistent path from the node v to the accepting sink.
The gate associated with the source is the output gate of the circuit.

We can build the circuit by introducing gates starting at the accepting sink of
the branching program. A topological sort of the branching program can provide
a suitable ordering of the nodes. We associate the accepting sink with a gate
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yielding the constant 1 and a possible rejecting sink with a gate yielding the
constant 0. Let the node v have outgoing unlabeled edges e1, e2, . . . and outgoing
edges ea, eb, . . . that are labelled with the literals a, b, . . ., respectively. Let the
edges e1, e2, . . . be incident to nodes which are associated with the gates g1, g2, . . .
and the edges ea, eb, . . . be incident to nodes which are associated with the gates
ga, gb, . . ., respectively. Then we introduce the gate gv which computes

g1 ∨ g2 ∨ . . . ∨ a ∧ ga ∨ b ∧ gb ∨ . . . .

If the node v has lv outgoing edges, then we need lv − 1 OR gates to compute
this term. If v only has one outgoing edge which is unlabeled and incident to the
node associated with g1, then we identify gv with g1 (gv and g1 are then the same
gate in the circuit). If gv only has one outgoing edge that is labelled, then gv is
an AND gate. In the remaining cases gv is an OR gate.

4.2 Ordered Binary Decision Diagrams

�Binary decision diagram (BDD)� is a di�erent name for �branching program�.
The term �binary decision diagram� became popular after Bryant [7] had applied
ordered BDDs to problems in hardware veri�cation. A variable ordering π on a
set of variables X = {x1, . . . , xn} is a permutation of the set {1, . . . , n}. The list
of variables ordered by π is xπ−1(1), . . . , xπ−1(n).

De�nition 4.7. An ordered binary decision diagram (OBDD) is a deterministic
read once branching program in which, on every path from the source to a sink,
the variables only occur in the order prescribed by some ordering π that does not
depend on the path.

A π-OBDD is an OBDD in which, on every path from the source to a sink,
the variables only occur in the order prescribed by the ordering π.

The computational models we de�ned in the previous sections of this the-
sis are referred to for proving lower bounds and for suggesting intractability of
certain functions. Unlike these, OBDDs are used as a data structure for e�-
ciently representing and manipulating Boolean functions. The following table
lists operations and decision problems for Boolean functions that can be e�-
ciently computed when using OBDDs, i.e. in time polynomial in the number of
nodes of the OBDD.
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Name Problem Algorithm
Evaluation Given a Boolean

function f : Bn 7→ B
and an argument
−→x ∈ Bn, compute
f (−→x ).

There can only be
one path from the
source to a sink in
an OBDD for f that
is consistent with −→x .
This path can easily
be found.

Boolean operation Given OBDDs for f
and g, �nd an OBDD
for the function f⊗g,
where ⊗ stands for
∨, ∧ or some other
Boolean operation.

It is possible to work
with OBDDs in a
similar way as with
�nite automata,
which also allow such
Boolean operations.

Complementation Given an OBDD for
f , �nd an OBDD for
¬f .

Exchange the ac-
cepting and rejecting
sink.

Substitution by con-
stant

Given an OBDD for
f (x1, . . . , xn), an in-
dex i and a constant
c ∈ B, �nd an OBDD
for the function
f(x1, . . . , xi−1, c, xi+1,
. . . , xn).

Delete the edges from
the OBDD that are
labelled with a lit-
eral that is false if
xi = c. Identify ver-
tices with each other
that are connected by
edges labelled with a
literal that is true if
xi = c.

Satis�ability Given an OBDD for
f : Bn 7→ B, �nd
some −→x ∈ Bn such
that f (−→x ) = 1 if
such an −→x exists.

Due to the read-once
property, every path
from the source to
the accepting sink of
the OBDD for f is
consistent with some
input. Thus, it is
su�cient to check for
paths from the source
to the accepting sink.

Several other operations and decision problems can be computed by combin-
ing the algorithms sketched in the table. For example, universal or existential
quanti�cation of variables as well as equivalence test (given OBDDs for f and g,
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¬x3
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¬x3

x3

This OBDD computes
the threshold function
T 3

2 (x1, x2, x3). The
computation proceeds
from left to right.

Figure 4.1: An example of an OBDD

decide whether f = g) can be performed e�ciently. The algorithms available for
OBDDs can be more e�cient than is apparent from the brief presentation here.
Using simple reduction rules, OBDDs can be transformed into a normal form that
is unique up to graph isomorphism. This can allow particularly e�cient equiva-
lence checks. When performing Boolean operations on OBDDs, isomorphisms of
subgraphs can be exploited in order to keep the OBDD representation compact.

The multitude of e�cient algorithms available for OBDDs makes OBDDs
valuable for a wide range of applications, particularly in hardware synthesis and
veri�cation. For example, OBDDs can be used to represent the Boolean function
computed by a Boolean circuit that is to be implemented as hardware. Then
the OBDD representation of this function can be used for fast evaluation for
the purpose of testing and for equivalence tests for veri�cation. OBDDs can
also be used to succinctly represent large sets of states that some automaton,
implemented as hardware, can assume. Veri�cation then consists in checking if
the automaton can reach any forbidden state. For a survey of the applications of
OBDDs and branching programs with other restrictions, we refer the reader to
the monograph of Wegener [47].

Since OBDDs have to obey severe restrictions on their structure, some im-
portant functions that are computable e�ciently by Boolean circuits can only be
represented ine�ciently by OBDDs. The minimum size of an OBDD for a cer-
tain function may depend on the variable ordering of the OBDD. The choice of
a variable ordering can be a di�cult decision that requires sophisticated heuris-
tics. Some functions, such as the threshold function T n

k , have polynomial size
OBDDs for any variable ordering. Other functions, such as the individual result
bits obtained by adding two binary coded integers, only have e�cient OBDD
representations for particular variable orderings.

An example of a function that requires exponential size OBDDs for any vari-
able ordering is the hidden weighted bit function introduced by Bryant [8].
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De�nition 4.8. The hidden weighted bit function HWBn is de�ned on n vari-
ables. Let x1, . . . , xn be variables and let w = |{xi | 1 ≤ i ≤ n and xi = 1}|. Then
the function HWBn (x1, . . . , xn) assumes the value xw.

Theorem 4.9 ([8]). Every OBDD for the function HWBn has at least 2n/6

nodes.

OBDDs are ine�cient for many functions of practical importance, such as
multiplication. Therefore it is natural to consider branching program models that
are less restricted than OBDDs. Deterministic read-once branching programs
without any restrictions on variable ordering can be more e�cient than OBDDs.
Such a branching program is also called free binary decision diagram (FBDD).

Theorem 4.10 ([41]). There are FBDDs for the function HWBn with less than
3n2 nodes.

However, FBDDs are still ine�cient for many functions.

De�nition 4.11. The function MULT n (xn−1, . . . , x0, yn−1, . . . , y0) is the nth
bit from the left of the binary coding of the product of the two integers with the
binary codings xn−1 . . . x0 and yn−1 . . . y0.

Theorem 4.12 ([28]). FBDDs for MULT n require 2Ω(
√

n) nodes.

We call a square matrix M with Boolean entries a permutation matrix if every
row and every column of M contains exactly one entry that is 1.

De�nition 4.13. The function PERMn is de�ned on n2 Boolean variables which
represent a n × n Boolean matrix. This function assumes 1 i� this matrix is a
permutation matrix.

Theorem 4.14 ([19]). Every FBDD for the function PERMn has at least Ω (2n)
nodes.

Another possibility to decrease branching program size is to allow nondeter-
minism. For example, it is easy to �nd an e�cient nondeterministic read-once
branching program for the function ¬PERMn which is 1 i� its argument is not
a permutation matrix: nondeterministically choose rowwise or columnwise pro-
cessing, and then look for a row or column that only contains ones. The resulting
branching program has a linear number of nodes. On the other hand, since tak-
ing the complement of an FBDD is as simple as for OBDDs, the lower bound of
Theorem 4.14 also holds for the function ¬PERMn.

However, there are several lower bounds for nondeterministic read-once branch-
ing programs as well. We cite one of them.

Theorem 4.15 ([20]). Every nondeterministic read-once branching program for
the function PERMn has at least 2Ω(n) nodes.
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In the next chapter we give lower bounds for multilinear circuits, which are a
generalization of nondeterministic read-once branching programs. In the search
of data structures that simultaneously o�er e�cient algorithms and succinct rep-
resentations of important functions, many other branching program models have
been proposed. For more information on these models we again refer the reader
to the monograph of Wegener [47].

4.3 Multilinear Circuits

The read-once property is a fundamental constraint that makes ordered binary
decision diagrams interesting. Recall that a branching program can be regarded
as a restricted kind of Boolean circuit (Theorem 4.6). A restriction on Boolean
circuits that corresponds to the read-once property for branching programs has
been introduced as multilinearity. Circuits that comply with this restriction are
called multilinear circuits. This circuit model is a generalization of nondetermin-
istic read-once branching programs.

Since the term �multilinear� has been �rst used to describe a restriction on
arithmetic circuits, we discuss arithmetic multilinear circuits before turning to
Boolean multilinear circuits. An arithmetic circuit performs computations in a
�eld. The gates of the circuit compute the �eld operations + and ×. The inputs
of the circuit are variables and �eld elements. A polynomial is multilinear if in
each of its monomials the power of every variable is at most one. An arithmetic
circuit is multilinear if every polynomial computed by some gate of the circuit is
multilinear. Multilinear arithmetic circuits were de�ned in [24]. Raz [31] proved
a superpolynomial gap between the size of multilinear arithmetic circuits and the
size of multilinear arithmetic formulas.

Raz [30] introduced syntactic multilinear circuits which are slightly more re-
stricted than multilinear circuits. In order to de�ne syntactic multilinear cir-
cuits, let var (g) be the set of variables that occur in the subcircuit rooted
at the gate g of some circuit. An arithmetic circuit is syntactic multilinear if
var (g1) ∩ var (g2) = ∅ for each of its ×-gates with inputs g1 and g2. Every syn-
tactic multilinear circuit is multilinear, but not vice versa. Raz [30] showed that
multilinear formulas can be converted to syntactic multilinear formulas without
an increase in size.

We now turn to Boolean multilinear circuits. In order to de�ne Boolean
multilinear circuits, let var (g) again be the set of variables that occur in the
subcircuit rooted at the gate g of some circuit.

De�nition 4.16. A Boolean circuit is multilinear if var (g1) ∩ var (g2) = ∅ for
each of its AND gates g with inputs g1 and g2.

In other words, a Boolean circuit is multilinear if the inputs to each of its AND
gates are computed from disjoint sets of variables. Our de�nition of Boolean
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multilinear circuits is equivalent to the de�nition of multilinear circuits in [40].
This notion of Boolean multilinear circuits closely mimics the de�nition of arith-
metic syntactic multilinear circuits. In [27] a slightly less restrictive de�nition
of Boolean multilinear circuits is used which resembles the concept of arithmetic
multilinear circuits more closely. While it may be possible to prove our results
about multilinear circuits using the more general de�nition of [27], this appears
to require signi�cantly more sophisticated proofs, so we decide to limit ourselves
to the more restrictive notion of multilinearity.

x y z

∨ ∨

∧ According to De�nition 4.16, this circuit
is not multilinear because the variable y
is an input to both OR gates, and hence
y occurs in both subcircuits rooted at the
inputs to the AND gate.

Figure 4.2: An example of a circuit that is not multilinear

It is clear that every Boolean function f can be computed by a multilinear
circuit with |PI (f)|−1 OR gates: just take the DNF of f . It is easy to see that the
transformation of Theorem 4.6 applied to a read-once branching program yields
a multilinear circuit. So every function with an e�cient nondeterministic read-
once branching program also has a just as succinct multilinear circuit. Thus,
many functions commonly referred to have multilinear circuits that are much
smaller than their DNFs. Consider the threshold function T n

k as an example.
The threshold function T n

k has
(

n
k

)
prime implicants, but can be computed by a

multilinear circuit of size O (nk). The construction of an e�cient ordered binary
decision diagram for T n

k can be found in [47, chapter 4]. Hence, the gap between
the size of a smallest multilinear circuit which computes a certain function and
the size of the DNF of this function can be exponential.

Let CONN (n) be the function whose argument is the adjacency matrix of
a directed n-vertex graph and assumes the value 1 if and only if the graph is
connected. Sengupta and Venkateswaran have proved the following theorem.

Theorem 4.17 ([40]). Multilinear circuits for CONN (n) have at least√
1
n
·
(

4
3

)n−1 gates.

Since the function CONN (n) can be computed by monotone circuits of poly-
nomial size, this shows that the gap between multilinear complexity and mono-
tone complexity is also exponential. Let BPM (n) be the function which decides
if an n-vertex bipartite graph has a perfect matching. The following theorem is
from Ponnuswami and Venkateswaran.
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Theorem 4.18 ([27]). Multilinear circuits for BPM (n) have at least Ω (20.459n)
gates.

In the next chapter we prove lower bounds for multilinear circuits of some
other functions. While we use a slightly less general notion of multilinearity than
in [27], we are able to prove stronger lower bounds which are even optimal.

The following lemma allows us to restrict ourselves to monotone multilinear
circuits. It is a special case of a theorem given in [12] for read-once nondetermin-
istic machines. We give an alternative proof that uses the speci�c restrictions of
multilinear circuits.

Lemma 4.19. If f is a monotone function, then any optimal multilinear circuit
for f is monotone.

Proof. Let S be an optimal multilinear circuit for f . We take the notion of a
parse-graph G of S from [40]: The parse-graph G includes the output of S; for
any OR gate v of G, exactly one immediate predecessor of v is included as its
only predecessor in G; and for any AND gate v included in G, both immediate
predecessors are included as predecessors of v in G. The parse-graph G can be
viewed as a kind of circuit that accepts a subset of the inputs that S accepts.
Since S is multilinear, a variable can occur at most once in G, so a variable and
its negation can never both appear in G. This means that the conjunction of all
variables and negated variables in G is consistent, and an implicant of f . So the
set of all non-negated variables in G must contain a prime implicant of f .

Every input that a circuit accepts is accepted by one of its parse-graphs.
Therefore, we can set all inputs of a multilinear circuit for f that are fed from
negated variables to 1. Clearly, the variable set of every parse-graph of the
resulting circuit will still contain a prime implicant of f because f is monotone.



Chapter 5

Multilinear Circuits Are Ine�cient
for Union-Free Functions

In this chapter we introduce union-free functions. The clique function and the
polynomial function, which we have already studied thoroughly in Chapter 3, are
examples of union-free functions. We prove an optimal lower bound for multilin-
ear circuits of union-free functions. This bound states that a multilinear circuit
for a union-free function needs just as many OR gates as the DNF of the function.

5.1 Union-Free Functions

The following de�nition of union-free functions will allow us to prove optimal
lower bounds for multilinear circuits.

De�nition 5.1. A monotone Boolean function is union-free if the union of any
two of its prime implicants does not contain a new prime implicant.

The clique function is a prominent example of a union-free function.

Lemma 5.2. The function CLIQUE (n, s) is union-free.

Proof. Suppose the union of two distinct s-cliques A and B contains all edges
of some third clique C. Since all three cliques are distinct and have the same
number of vertices, C must contain a vertex u which does not belong to A and
a vertex v which does not belong to B. This already leads to a contradiction
because either the vertex u (if u = v) or the edge {u, v} (if u 6= v) of C would
remain uncovered by the cliques A and B.

For certain parameters the polynomial function is another example of a union-
free function.

Lemma 5.3. If s ≤ q/2, then the function POLY (q, s) is union-free.

41
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Proof. The prime implicants of the function POLY (q, s) are of the form∧
i∈GF (q) xi,f(i) for some polynomial f (z) of degree at most s − 1. The function

POLY (q, s) is s-disjoint, i.e. two distinct prime implicants of this function can-
not have s variables in common. Otherwise, two distinct polynomials of degree
at most s− 1 would assume the same values at s points, which is impossible.

To prove the lemma, assume that p1, p2 and p3 are distinct prime implicants
of POLY (q, s) and that p3 ⊆ p1 ∪ p2. Then p3 must have q/2 ≥ s variables in
common with p1 or p2, a contradiction.

5.2 The Lower Bound for Multilinear Circuits

We now give the lower bound for multilinear circuits:

Theorem 5.4. Let f be a monotone union-free function. Then any multilinear
circuit for f must have at least |PI (f)| − 1 OR gates.

It is well known that the minimal DNF of a monotone function is the disjunc-
tion of all of its prime implicants.

Corollary 5.5. Multilinear circuits for CLIQUE (n, s) require
(

n
s

)
−1 OR gates

(just as many as the DNF of this function).

Because nondeterministic read-once branching programs can be simulated by
multilinear circuits, the bound of exp (Ω (s log (n/s))) given by Corollary 5.5 im-
proves the bound of exp (Ω (min (s, n− s))) given in [6] for nondeterministic read-
once branching programs computing CLIQUE (n, s).

Corollary 5.6. If s ≤ q/2, then any multilinear circuit for POLY (q, s) has
qs − 1 OR gates (just as many as the DNF of this function).

For the proof of Theorem 5.4 we �rst give a lemma that describes a restric-
tion of multilinear circuits. This restriction leads to exponential lower bounds
for certain monotone Boolean functions. Given a prime implicant p, we show
that, depending on the circuit, certain variables of p can be substituted by some
variables of another prime implicant p′. This yields a �derived� implicant of the
function computed by the circuit. If the function is union-free, we are able to
reason further about the derived implicant.

We say a path from a gate to the output of a circuit is consistent with a
monom m if m is an implicant of all the functions computed at the gates along
this path. We call a gate g necessary for an implicant m of a circuit S if m is
not an implicant of the circuit Sg→0 we obtain from S by replacing g with the
constant 0.

Lemma 5.7. For every gate g which is necessary for an implicant m of S, there
is a path from the output of S to g which is consistent with m.
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Proof. First note that m is an implicant of the function computed by an OR gate
h i� m is an implicant of one of the inputs to h. Analogously, the implicant m is
an implicant of an AND gate h i� m is an implicant of both of the inputs to h.

We �nd a consistent path in S from the output to g by descending into the
circuit starting at the output. Doing so, we compare the two circuits S and Sg→0

with each other. We require that our path consists of gates that are not implied
by m in the modi�ed circuit Sg→0. We start with the output gate as the �rst
gate of the path. Assume we have followed the path g1, . . . , gi and we are not
done since gi 6= g. We must pick the next gate gi+1 on our path. If gi is an OR
gate, then we choose gi+1 as the input to gi that is implied by m in S. Since both
inputs to gi are not implied by m in Sg→0, our choice of gi+1 is also not implied
by m in Sg→0, as we require. If gi is an AND gate, then we choose gi+1 as the
input to gi that is not implied by m in Sg→0. Since both inputs to gi are implied
by m in S, our choice of gi+1 is also implied by m in S, as we require.

Finally we must reach g while constructing the path, since every leaf node in
Sg→0 which is not g does not di�er from the corresponding node in S.

Let PIg (f) denote the set of prime implicants of f that g is necessary for. By
PI (g) we denote the set of prime implicants of the function computed at gate g.

Lemma 5.8 (Exchange Lemma). Let g be a gate in a monotone multilinear
circuit S for a function f and p, p′ be prime implicants in PIg (f). Let m ⊆ p
and m′ ⊆ p′ be distinct prime implicants in PI (g).

(i) If w is a path from g to the output of S that is consistent with p, then w
is consistent with the derived monom (p \m)∪m′. This means in particular that
the derived monom (p \m) ∪m′ is also an implicant of f .

(ii) If f is union-free, then the identity p = (p′ \m′) ∪m holds.

Proof. (i) We �rst note that the substitution of the variables of m by the variables
of m′ is valid at gate g. Then we observe that the substitution remains valid along
the path w due to the multilinearity of the circuit.

We have to show that (p \m) ∪m′ is an implicant of all functions computed
along w (g = g1, . . . , gt). We prove this by induction on the length of the path w.
For g1 = g the claim is correct since (p \m) ∪m′ is a superset of m′ ∈ PI (g1).
For the inductive step, assume that q ∈ PI (gi) such that q ⊆ (p \m) ∪ m′. If
gi+1 is an OR gate, then q is an implicant of gi+1. If gi+1 is an AND gate, then
let h be the other gate feeding it. We know that p is an implicant of the function
computed at gi+1. Hence, there must be some mh ∈ PI (h) such that mh ⊆ p.
Because the circuit is multilinear, we have var (gi)∩ var (h) = ∅. Gate g belongs
to the subcircuit rooted at gate gi. We conclude that var (g) ⊆ var (gi) and that
var (g) ∩ var (h) = ∅. Since a variable of a prime implicant of a gate must occur
somewhere in the subcircuit rooted at that gate, we conclude from m ∈ PI (g)
and mh ∈ PI (h) that m∩mh = ∅. Now we can see that q ∪mh, an implicant of
the function computed at gi+1, is a subset of (p \m) ∪m′.
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(ii) According to Lemma 5.7, there is path from g to the output of S that is
consistent with p, because g is necessary for p. Therefore, according to (i), the
monom (p \m)∪m′ is an implicant of f . Clearly, we have (p \m)∪m′ ⊆ p∪ p′.
Since f is union-free, this implies p ⊆ (p \m)∪m′ or p′ ⊆ (p \m)∪m′. Because
m and m′ are distinct prime implicants, we have m 6⊆ m′ and m 6⊇ m′. The
inclusion p ⊆ (p \m) ∪ m′ is impossible because m 6⊆ m′. So p′ ⊆ (p \m) ∪ m′

holds, this implies m′ ⊇ p′ \ p.
Since its assumptions are symmetrical, claim (i) also implies that (p′ \m′)∪m

is an implicant of f . Arguing in the same way as above we conclude that p ⊆
(p′ \m′)∪m. Since m′ ⊇ p′\p, we have (p′ \m′)∪m ⊆ p. From the two inclusions
p ⊆ (p′ \m′) ∪m and (p′ \m′) ∪m ⊆ p we derive p = (p′ \m′) ∪m.

We now show how to transform a multilinear circuit for a union-free function
into a normal form. We call a monotone circuit broom-like if, for each of its AND
gates with inputs g1 and g2, |PI (g1)| = 1 or |PI (g2)| = 1 (or both). Thus,
broom-like circuits have a particularly simple structure, and there is a direct
correspondence between their prime implicants and their OR gates.

Lemma 5.9. Every monotone multilinear circuit S for a union-free function f
can be transformed into a broom-like formula for f with at most as many OR
gates as S.

Proof. We �rst transform S into a broom-like multilinear circuit for f without
an increase in the number of OR gates. For this we need to know the following.

Claim 5.10. Let g be an AND gate with inputs g1 and g2. If PI (g1) is not
empty, then there exists a monom m in PI (g1)∪PI (g2) such that m ⊆ p for all
p ∈ PIg (f).

Proof. Suppose there is no suitable m in PI (g1). We show that then there must
be an m in PI (g2) such that m ⊆ p for all p in PIg (f). Since there is no suitable
m in PI (g1), PIg (f) cannot be empty. We pick some arbitrary p′ in PIg (f).
Because p′ is an implicant of the function computed at g, there must be some m′

2

in PI (g2) such that m′
2 ⊆ p′. We prove that in fact

m′
2 ⊆ p for all p ∈ PIg (f) .

We distinguish two cases. First note that there must be some m′
1 in PI (g1) such

that m′
1 ⊆ p′.

Case 1 : m′
1 6⊆ p. Then there is some m1 in PI (g1) such that m1 ⊆ p, since p

is an implicant of the function computed at g. Since g is an AND gate, the input
g1 is also necessary for p. Therefore we can apply Lemma 5.8(ii), which yields
that p = (p′ \m′

1) ∪m1. Hence, m′
2 ⊆ p because m′

2 ⊆ p′ and m′
1 ∩m′

2 = ∅ due
to the multilinearity of the circuit.

Case 2 : m′
1 ⊆ p. Note that there must be some p′′ ∈ PIg (f) such that

m′
1 6⊆ p′′ because, by our initial assumption, m′

1 ∈ PI (g1) cannot be a suitable
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choice of m. Case 1 applies to p′′ because m′
1 6⊆ p′′, and we conclude m′

2 ⊆ p′′.
There must be some m′′

1 in PI (g1) with m′′
1 ⊆ p′′. We use Lemma 5.8 again and

�nd that p = (p′′ \m′′
1) ∪m′

1. Hence, m′
2 ⊆ p because m′

2 ⊆ p′′ and m′′
1 ∩m′

2 = ∅
due to the multilinearity of the circuit.

We describe a modi�cation that can be applied to every AND gate g which
prevents S from being broom-like. Let g1 and g2 be the gates that feed g. The
gate g prevents S from being broom-like, so |PI (g1)| > 1 and |PI (g2)| > 1. Let
m be the monom in PI (gi) (i ∈ {1, 2}) given by Claim 5.10. We add a new gate h
that computes m (along with the corresponding subcircuit for this computation).
Then we disconnect g from gi and feed g from h instead of gi. Clearly, the
resulting circuit S ′ rejects all the inputs that the original circuit rejected, since
we are dealing with monotone circuits. Because S ′ accepts all inputs that Sg→0

accepts, g must be necessary for any prime implicant p of S that is not a prime
implicant of S ′. But according to Claim 5.10, after the modi�cation every such
p remains an implicant of the function computed at g. This way we obtain a
broom-like multilinear circuit S∗ for f without an increase in the number of OR
gates.

We now describe a way of transforming a broom-like multilinear circuit S∗

for f into a broom-like formula F for f without an increase in the number of OR
gates.

Claim 5.11. Let g be a gate in S∗ such that PI (g) 6= ∅ . Then
(i) there is some monom m in PI (g) such that m ⊆ p for all p in PIg (f), or
(ii) there is some path w from g to the output of S∗ that is consistent with all

p ∈ PIg (f).

Proof. We show that if (i) does not hold, then (ii) follows. This proof has a
similar structure compared to the proof of the Claim 5.10. Since (i) does not
hold, PIg (f) cannot be empty. So there is some p′ ∈ PIg (f) and, according to
Lemma 5.7, some path w′ from g to the output of S∗ that is consistent with p′.
We prove that in fact

w′ is consistent with p for all p ∈ PIg (f) .

We distinguish two cases. First note that there is some m′ ∈ PI (g) with m′ ⊆ p′

because p′ is an implicant of the function computed at g.
Case 1 : m′ 6⊆ p. There must be some m ∈ PI (g) such that m ⊆ p because

p is an implicant of the function computed at g. Lemma 5.8 yields that p =
(p′ \m′) ∪m and that w′ is consistent with p.

Case 2 : m′ ⊆ p. Because (i) does not hold, there is some p′′ in PIg (f) such
that m′ 6⊆ p′′. Case 1 applies to p′′ because m′ 6⊆ p′′, and we conclude that w′ is
consistent with p′′. There must be some m′′ in PI (g) with m′′ ⊆ p′′. Lemma 5.8
tells us that p = (p′′ \m′′) ∪m′ and that w′ is consistent with p.
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We now describe a modi�cation that we carry out for every gate g of S∗ with
fanout larger than 1 in order to reduce its fanout to 1. As with the modi�cation
for making the circuit broom-like, we only have to check the prime implicants for
which g is necessary. The pathological case PI (g) = ∅ (g = 0) is trivial, so it
su�ces to discuss the two cases listed in Claim 5.11.

Case 1 : There is some m in PI (g) such that m ⊆ p for all p in PIg (f). We
remove g from the circuit and replace all wires from g by subcircuits that each
compute m. The resulting circuit computes a function that is clearly implied by
all prime implicants p in PIg (f).

Case 2 : There is some path w from g to the output of S∗ that is consistent
with all p in PIg (f). We then cut all wires stemming from g that are not on
path w, i.e. we replace inputs to other gates from g by the constant 0. All
prime implicants in PIg (f) are preserved because after the modi�cation w is still
consistent with all of them. To see this, note that, due to the multilinearity of
the circuit, every AND gate on w can have at most one input that depends on g
(such an input must be on w itself).

The following lemma enables us to count the prime implicants of monotone
functions by counting the OR gates of their monotone broom-like formulas.

Lemma 5.12. Let F be a monotone broom-like formula computing f . Then F
has at least |PI (f)| − 1 OR gates.

Proof. We prove the lemma by induction on the size of the formula. If F does
not contain any OR gates, it is clear that the claim holds. Let F1 and F2 be
formulas computing the monotone functions f1 and f2, respectively. Since

|PI (f1 ∨ f2)| ≤ |PI (f1)|+ |PI (f2)| ,

|PI (f1 ∨ f2)| − 1 ≤ ((|PI (f1)| − 1) + (|PI (f2)| − 1)) + 1 ,

so the claim holds for F1∨F2. So let us turn to the case of conjunction. W.l.o.g. let
f1 be a monom. Then

|PI (f1 ∧ f2)| ≤ |PI (f2)| ,

so the claim holds in this case too.

Theorem 5.4 follows immediately from Lemma 5.9 together with Lemma 5.12.
Recall that, according to Lemma 4.19, it is enough to consider monotone multi-
linear circuits.



Chapter 6

An Upper Bound for the Clique
Function

In this chapter we show that the union-freeness property is not su�cient for
proving good lower bounds for unrestricted monotone circuits. By Corollary 5.5,
the function CLIQUE (n, n− 1) requires n − 1 OR gates to be computed by a
multilinear circuit. On the other hand, we prove the following upper bound in
this chapter.

Theorem 6.1. The function CLIQUE (n, n− 1) can be computed by a monotone
formula with O (log n) OR gates.

Thus, general monotone circuits for the clique function can be much more
e�cient than multilinear circuits. The only other upper bound for the clique
function that we are aware of is given in [46] and is only for its non-monotone
complexity.

We will use error correcting codes for constructing a circuit for the clique
function that is more e�cient than the DNF. In order to introduce codes, we �rst
need to de�ne the Hamming distance between two words.

De�nition 6.2. Let A be a set of symbols. For two words x, y ∈ Ak, x =
(x1, . . . , xk) and y = (y1, . . . , yk), the Hamming distance between x and y is

d (x, y) = |{i |xi 6= yi and 1 ≤ i ≤ k}| .

De�nition 6.3. A code over an alphabet A with block length k and minimal
distance d is a nonempty subset C of Ak such that d = min {d (x, y) |x, y ∈ C}.

For our upper bound on monotone complexity, we will need a code with
su�cient minimal distance and number of code words. To prove its existence, we
will use the Gilbert bound for codes. An introduction to the theory of coding,
including the Gilbert bound, can be found in the textbook of van Lint [44].
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Theorem 6.4 (Gilbert Bound). For every alphabet A, every k ∈ N and every
d ∈ N such that 1 ≤ d ≤ k, there exists a code C over A with block length k,
minimal distance d and

|C| ≥ |A|k
/ d−1∑

i=0

(
k

i

)
(|A| − 1)i

codewords.

Proof. Consider a code C ⊆ Ak with minimal distance at least d such that no
codeword can be added without making its minimal distance smaller than d. For
every word w ∈ Ak there must be a codeword c ∈ C such that d (w, c) < d.
Otherwise some word w could be added to the code without making the minimal
distance smaller than d. So Ak is the union of all words with hamming distance
at most d− 1 to some codeword in C. For every word c ∈ Ak we have

∣∣{w ∈ Ak | d (w, c) ≤ d− 1
}∣∣ =

d−1∑
i=0

(
k

i

)
(|A| − 1)i .

This gives us

|A|k ≤ |C|
d−1∑
i=0

(
k

i

)
(|A| − 1)i ,

and the bound of the theorem follows.

Lemma 6.5. For every k, there is a code C ⊆ Ak over an alphabet A (|A| = 212)
with block length k, minimal distance d > 3k/4 and at least |C| ≥ 2k codewords.

Proof. We choose some alphabet A with 212 symbols. According to the Gilbert
bound, there is a code C with minimal distance d and

|C| ≥ 212k

d2k · 212(d−1)
= 212(k−d+1)−k−log d

codewords. We choose d = 3k/4 + 1 and obtain |C| ≥ 23k−k−log d and |C| ≥ 2k

since d ≤ k.

We will use the following lemma for proving the upper bound.

Lemma 6.6. Let G be a graph with n vertices. If its complement G does not
contain a triangle and does not have two edges which are not incident to a common
vertex, then G has an (n− 1)-clique.

Proof. Suppose G does not have an n− 1-clique. Then G is not a star. Suppose
G does not have two edges which are not incident to a common vertex. Choose
arbitrary distinct edges e1 and e2 in G. Let e1 and e2 be incident to the common
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vertex u. Since G is not a star, there is an edge e3 which is not incident to u.
Let e2 and e3 be incident to the common vertex v 6= u. The edges e1 and e3 must
share the common vertex w, which is distinct from u and v. Hence, u, v and w
form a triangle in G.

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. To design the desired formula for CLIQUE (n, n− 1) we
use an error correcting code C ⊆ Ak for some k over an alphabet A with a constant
number of symbols (independent of n) such that |C| ≥ n and the minimal distance
d of C is larger than 3k/4. The existence of such a code of length k = O(log n)
is guaranteed by Lemma 6.5.

We assign to each vertex x (and hence, to each (n− 1)-clique V \{x}) its own
codeword code (x) ∈ C. For each 1 ≤ i ≤ k and a ∈ A, let Si,a be the intersection
of all (n− 1)-cliques whose codes have symbol a in the i-th position. Hence,

Si,a = V \ {x ∈ V | code (x) has symbol a in position i} . (6.1)

Let mi,a be the monom consisting of all variables which correspond to edges
having both their endpoints in Si,a (if |Si,a| ≤ 1, we set mi,a = 1). We claim that
the formula

F =
k∧

i=1

∨
a∈A

mi,a

computes CLIQUE (n, n− 1). Clearly, this formula has k (|A| − 1) = O(log n)
OR gates. Using distributivity we obtain the following representation of the
function computed by F :

F =
∨

(a1,...,ak)∈Ak

k∧
i=1

mi,ai
. (6.2)

Every (n− 1)-clique V \ {x} with code (x) = (a1, . . . , ak) is accepted by the
monom

∧k
i=1 mi,ai

because the clique V \ {x} contains all the cliques Si,ai
, i =

1, . . . , k. Hence, by (6.2) every (n− 1)-clique is accepted by F . It remains to
show that F does not accept any graph without an (n − 1)-clique. Let G be a
graph accepted by F . Then by (6.2) there is a sequence a1, . . . , ak of symbols in
A such that G is accepted by the monom

∧k
i=1 mi,ai

. For a vertex x ∈ V , let

Px = {i | code (x) has symbol ai in position i} .

Since the code C has minimal distance d > 3k/4, this implies that for every two
distinct vertices x and y,

|Px ∩ Py| ≤ k − d < k/4 . (6.3)
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Let {x, y} be an edge of the complement graph G. Then the edge {x, y}
cannot belong to any of the monoms m1,a1 , . . . ,mk,ak

, implying that x 6∈ Si,ai
or

y 6∈ Si,ai
for all i = 1, . . . , k. According to (6.1) this means that for all i = 1, . . . , k,

code (x) or code (y) has symbol ai at position i. So we have

Px ∪ Py = [k] = {1, . . . , k} . (6.4)

Now we are able to show that G must contain an (n− 1)-clique. We do so by
showing that its complement G does not contain a triangle and does not contain
a pair of vertex disjoint edges. The result then follows with Lemma 6.6.

Assume �rst that G contains a triangle with vertices u, v and w. By (6.4), we
have that Pu ∪ Pw = [k] and Pv ∪ Pw = [k]. Taking the intersection of these two
equations yields

(Pu ∩ Pv) ∪ Pw = [k] .

But by (6.3), we have that |Pu ∩ Pv| < k/4, so |Pw| > 3k/4. Similarly we obtain
|Pu| > 3k/4, implying that |Pu ∩ Pw| > k/2, a contradiction with (6.3).

Assume now that G contains a pair of vertex disjoint edges {u, v} and {x, y}.
By (6.4), we have Pu∪Pv = [k] and Px∪Py = [k]. Assume w.l.o.g. that |Pu| ≥ |Pv|.
Then |Pu| ≥ k/2. We know that

Pu = Pu ∩ [k] = Pu ∩ (Px ∪ Py) = (Pu ∩ Px) ∪ (Pu ∩ Py) .

Assume w.l.o.g. that |Pu ∩ Px| ≥ |Pu ∩ Py|. Then |Pu ∩ Px| ≥ |Pu|/2 ≥ k/4, a
contradiction with (6.3).

Theorem 6.1 tells us that monotone circuits for the function CLIQUE (n, n− 1)
are compressible, i.e. for su�ciently large n they require less OR gates than the
respective DNF. We now show that monotone circuits for most other clique func-
tions are also compressible. Thus, our optimal lower bounds for the clique func-
tion from the previous section cannot be extended to general monotone circuits
in any way.

Corollary 6.7. There exists some s0 such that, for all s ≥ s0 and n > s, the
function CLIQUE (n, s) has monotone circuits with less OR gates than the DNF
of this function.

Proof. We pick s0 such that every function CLIQUE (s + 1, s) with s ≥ s0 is
compressible. This is possible according to Theorem 6.1. Now we show that
a clique function CLIQUE (n, s) with s ≥ s0 and n > s is compressible. We
choose arbitrary s + 1 vertices in the n-vertex graph taken by CLIQUE (n, s).
Let p1, . . . , ps+1 be the prime implicants that correspond to the s-cliques of the
s + 1 chosen vertices. We denote the other prime implicants of CLIQUE (n, s)
by q1, . . . , qk, so we can write the DNF of CLIQUE (n, s) as

CLIQUE (n, s) =

(
s+1∨
i=1

pi

)
∨

(
k∨

i=1

qi

)
. (6.5)
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Here the disjunction
∨s+1

i=1 pi is the DNF of the function CLIQUE (s + 1, s), so
this term can be computed by a monotone circuit with less than s OR gates.
Hence, according to (6.5) the function CLIQUE (n, s) can be computed by a
monotone circuit with less OR gates than the DNF of this function.
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Chapter 7

Lower Bounds for Monotone
Σ4-Circuits

In this chapter we study circuits of bounded depth. A circuit has alternation
depth d i� d is the highest number of blocks of OR gates and blocks of AND
gates on paths from input gates to the output. When determining depth, we do
not pay attention to NOT gates.

De�nition 7.1. A Σd-circuit (respectively, Πd-circuit) is a Boolean circuit with
alternation depth at most d such that the output gate is an OR gate (AND gate,
respectively).

Good lower bounds for non-monotone bounded depth circuits have been proved
[14, 15]. In this chapter we only deal with monotone bounded depth circuits. We
contrast the upper bound for the clique function proved in the previous chapter
with a lower bound for functions that are even harder than the clique function
in a certain sense. We introduced the polynomial function POLY (q, s) in Sec-
tion 3.1. For some polynomial functions we give incompressibility results, similar
to those for multilinear circuits, also for monotone Σ4-circuits. We show that
monotone Σ4-circuits for these functions require at least as many OR gates as
the respective DNFs. The construction used in the proof of Theorem 6.1 yields a
monotone Π3-formula. A monotone Π3-formula is a simple kind of monotone Σ4-
circuit. Thus, to prove upper bounds for the functions we study in this chapter,
we would have to give a more elaborate construction than we did for the clique
function. A monotone circuit for any of these functions that is more e�cient
than the DNF would have to be more complicated than a Σ4-circuit. Therefore,
these hard polynomial functions we investigate here are an interesting starting
point for looking for new lower bounds. It is not even clear whether these poly-
nomial functions can be computed by unrestricted circuits that are smaller than
the respective DNFs.

We will use the following property for proving the lower bound.
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De�nition 7.2. A Boolean function is s-disjoint if any two of its prime implicants
do not have s variables in common.

The following lemma shows that the union-freeness property is a special case
of the disjointness property.

Lemma 7.3. Let p1, ..., pr be prime implicants of a monotone Boolean function
f and m be an implicant of f . Let f be k-homogeneous and k/r-disjoint.

(i) If
⋃r

i=1 pi ⊇ m, then m ⊇ pi for some i.
(ii) If x1, . . . , xr are variables such that xi ∈ pi and xi 6∈ pj for i 6= j, then⋃r

i=1 (pi \ {xi}) is not an implicant of f .

Proof. (i) There must be some prime implicant p of f with m ⊇ p. Since
⋃r

i=1 pi ⊇
p, p must share at least k/r variables with some pi. Because f is k/r-disjoint,
this implies p = pi. Claim (ii) is a direct consequence of (i).

When stating the following lemma, we deviate from the circuit model intro-
duced in Section 2.2 by using gates of unbounded fanin. The lemma deals with
Π3-circuits with gates of unbounded fanin. We restrict these circuits to depth 3.
We require the output gate to be an AND gate (possibly with only one input)
and the inputs to this gate to be OR gates. The top fanin is the fanin of the out-
put gate. The bottom fanin is the maximal fanin of the AND gates representing
Π1-subcircuits (if there are no such subcircuits, we de�ne the bottom fanin to be
1).

Lemma 7.4. Let f be a monotone k-homogeneous and s-disjoint function. If
r ≤ k/2s and h is a function such that h ≤ f (i.e., f evaluates to 1 if h does)
and |PI (h) ∩ PI (f)| ≥ r, then any monotone Π3-circuit for h with bottom fanin
at most s− 1 must have top fanin at least (k/2s)r.

Proof. Let S be a monotone Π3-circuit with top fanin a and bottom fanin at
most s− 1, and let F be the function computed by S. Let a < (k/2s)r. We now
show that the circuit S must then make an error, i.e. that F 6= h. For the sake
of contradiction, assume that F = h.

We choose arbitrary distinct prime implicants p1, . . . , pr ∈ PI (h) ∩ PI (f).
Our goal is to pick x1 ∈ p1, . . . , xr ∈ pr suitable for Lemma 7.3(ii). Lemma 7.3(ii)
then yields a monom m which, according to the Lemma, is not an implicant of
h, but for which we show that it is an implicant of F . This way we obtain F 6= h
and contradict our assumption.

We pick the xi's in the order indicated by their indices. During this process
we consider the preliminary monoms

mt =
t⋃

i=1

(pi \ {xi}) , t = 1, . . . , r .
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The preliminary monom mt is available after the t-th step of the process. Finally,
the monom m = mr is the desired implicant of F needed for the contradiction
with Lemma 7.3(ii).

Let F1, . . . , Fa be the functions computed by the Σ2-subcircuits of S that are
inputs to the AND gate which is the output gate of S. The function F computed
by S can be represented in the form

F =
a∧

i=1

Fi .

Let At denote the set of indices of the functions Fi which are not implied by mt,
i.e. i ∈ At i� mt is not an implicant of Fi.

Claim 7.5. There is always a choice of xt in order to make

|At| ≤
|At−1|
k/2s

.

Proof. We describe a choice of xt that makes At su�ciently small. For every i
in At−1 we choose some mi ∈ PI (Fi) with pt ⊇ mi. Every Fi has such a prime
implicant because pt is a prime implicant of h = F . As xt, we pick a variable of pt

that does not belong to any other of the prime implicants p1, . . . , pr. Since each
of the prime implicants can share at most s− 1 variables with each of the other
r − 1 prime implicants, the prime implicant pt has at least k − (s− 1) (r − 1)
variables which do not belong to any of the other prime implicants. Of these
�private� variables of pt, at most s− 1 can belong to some particular monom mi

we chose, since the circuit has a bottom fanin of at most s− 1. If we add all the
occurrences of the private variables of pt in the monoms mi together, we count
at most (s− 1) |At−1| occurrences. Using that pt has at least k − (s− 1) (r − 1)
private variables, we �nd that at least one of these variables is in not more than

(s− 1) |At−1|
k − (s− 1) (r − 1)

≤ |At−1|
k/2s

of the chosen monoms. This su�ciently �rare� variable is our choice of xt. Since
only those i ∈ At−1 remain in At for which xt belongs to the chosen monom mi,
the desired bound for |At| follows.

We now �nish the proof of Lemma 7.4. We start with |A0| = a < (k/2s)r.
According to the claim, we can always choose the x1, . . . , xr such that Ar is empty.
This means the �nally constructed monom mr is in fact an implicant of F .

Since Σ4-circuits can be broken up naturally into Π3-circuits, our lower bound
for monotone Σ4-circuits follows easily from the previous lemma about monotone
Π3-circuits. We only have to pay attention to a few technicalities.
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Theorem 7.6. Let f be a monotone k-homogeneous s-disjoint function such that
|PI (f)| ≤ (k/2s)k/2s. Then every monotone Σ4-circuit for f must have at least
|PI (f)| − 1 OR gates.

Proof. Let S be a monotone Σ4-circuit with gates of fanin 2 which computes
a monotone k-homogeneous s-disjoint function f . We assume that S has the
smallest possible number of OR gates.

Without loss of generality we can assume that no Π1-subcircuit of S depends
on more than s−1 variables, i.e. S has bottom fanin at most s−1 when regarded
as a circuit of unbounded fanin. We can do so because a monom m computed
by a Π1-subcircuit with more than s− 1 variables can be implied by at most one
prime implicant p ∈ PI (f) (f is s-disjoint). We can remove this Π1-subcircuit
and, if m is implied by p ∈ PI (f), add p to the top level disjunction of S. The
function computed after the modi�cation has the same prime implicants as the
original one. This modi�cation is allowed because it leaves the total number of
OR gates (with fanin two) unchanged, and we are only interested in this number.

The function f can be represented as a disjunction of functions fi which are
computed by Π3-circuits: f =

∨
fi. Let fi be computed by the Π3-circuit Si.

Every prime implicant of f must be a prime implicant of at least one of the fi.
Let R be the largest number of prime implicants of f that are prime implicants
of one particular fi = h. Let h be computed by the Π3-circuit Si = H.

We claim that 2 ≤ R < k/2s cannot hold. To see this, assume the contrary.
View H as a Π3-circuit of unbounded fanin. We can apply Lemma 7.4 to H.
Lemma 7.4 yields that H must have a top fanin of at least (k/2s)R ≥ (k/2s)2 ≥
R2. Note that we may assume w.l.o.g. that at most one of the inputs to the top
level conjunction of H computes a monom. (We can replace several such inputs by
one input computing the conjunction of the monoms.) Using this assumption, we
conclude that H requires at least R2 − 1 OR gates. However, a plain disjunction
(DNF) of the prime implicants that h shares with f could do the same job that H
does in S, and requires only R−1 < R2−1 OR gates of fanin 2. This contradicts
our assumption that S has the smallest possible number of OR gates.

To �nish the proof of Theorem 7.6, we distinguish the two remaining cases.
Case 1 : R = 1. Then S is essentially a DNF and needs |PI (f)| − 1 OR

gates.
Case 2 : R ≥ k/2s. Again we view H as a circuit with gates of unbounded

fanin. Applying Lemma 7.4 with r = k/2s yields that H must have a top fanin
of at least (k/2s)k/2s ≥ |PI (f)| (this inequality is stated as an assumption of the
theorem). When built of fanin-2 gates, H requires at least |PI (f)| − 1 OR gates
since again we may assume w.l.o.g. that at most one of the inputs to the top level
conjunction of H consists of a single monom.

The function POLY (q, s) is q-homogeneous. This function is also s-disjoint
because the graphs of two distinct polynomials of degree at most s − 1 cannot
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share s points. This together with |PI (POLY (q, s))| = qs and Theorem 7.6
leads to the following lower bound.

Corollary 7.7. If s ≤ √
q/2, then any monotone Σ4-circuit for POLY (q, s)

must have at least qs − 1 OR gates (just as many as the DNF of this function).
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Chapter 8

Lower Bounds for Pseudoslice
Functions

We de�ned slice functions in Section 3.2. Slice functions are interesting because
a superpolynomial lower bound on the monotone complexity of a slice function
implies a superpolynomial lower bound on its non-monotone complexity. How-
ever, the method of approximations, which is the only known method for proving
superpolynomial monotone lower bounds, seems to fail for slice functions. As
was explained in Section 3.3, the method of approximations relies on adequate
sets of inputs which are mapped to 0 by the function considered. We called them
negative test graphs. One property of t-slice functions which seems to make the
known arguments unsuitable for them is that they accept all inputs with more
than t ones. We suggest to approach this problem by studying the complexity of
functions that are similar to slice functions. In this chapter we consider functions
of the form f ∨T n

t+1 that accept all inputs with more than t ones, as does a t-slice
function.

De�nition 8.1. The t-pseudoslice function of f is the function f ′t = f ∨ T n
t+1.

Let |x| denote the number of ones in the Boolean vector x. Then an equivalent
de�nition of the t-pseudoslice f ′t of f is

f ′t (x) =


f (x) for |x| < t
f (x) for |x| = t
1 for |x| > t

.

On the other hand, the t-slice ft of f assumes the following values:

ft (x) =


0 for |x| < t
f (x) for |x| = t
1 for |x| > t

.

Thus, the t-slice and the t-pseudoslice function of f only di�er for arguments
with less than t ones.
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We are able to show that our lower bounds for multilinear circuits and mono-
tone Σ4-circuits also hold for certain pseudoslice functions. We �rst show how to
extend our lower bound for multilinear circuits to pseudoslice functions. The key
step is to prove a variant of Lemma 5.8(ii) for pseudoslice functions.

In the proof of Lemma 5.8(ii), the union-freeness of f is only used to assert
that the union of the prime implicants p and p′ does not contain any new prime
implicant. This allows us to state the following generalization of Lemma 5.8(ii).

Corollary 8.2 (Generalization of Lemma 5.8(ii)). Let g be a gate in a
monotone multilinear circuit for a function f and p, p′ be prime implicants in
PIg (f). Let m ⊆ p and m′ ⊆ p′ be distinct prime implicants in PI (g). If f
has no prime implicant other than p and p′ which is a subset of p ∪ p′, then the
identity p = (p′ \m′) ∪m holds.

With this corollary, it is easy to prove a variant of Lemma 5.8(ii) for pseu-
doslice functions.

Lemma 8.3 (Exchange Lemma for Pseudoslice Functions). Let g be a
gate in a monotone multilinear circuit for the t-pseudoslice f ′t of a monotone
k-homogeneous union-free function f such that t ≥ 2k. Let p and p′ be prime
implicants of f that are in PIg (f ′t). If m ⊆ p and m′ ⊆ p′ are distinct prime
implicants in PI (g), then the identity p = (p′ \m′) ∪m holds.

Proof. We apply corollary 8.2 to f ′t . According to corollary 8.2, all we need to
show is that f ′t has no prime implicant other than p and p′ which is a subset
of p ∪ p′. The prime implicants of f ′t are the prime implicants of f , which have
length k, and the prime implicants of T n

t+1, which have length t + 1 ≥ 2k + 1.
Let q ⊆ p ∪ p′ be a prime implicant of f ′t . We have |p| = |p′| = k because f is
k-homogeneous. We conclude 2k ≥ |p ∪ p′| ≥ |q|. Thus, the prime implicant q
of f ′t must also be a prime implicant of f . Because f is union-free, this implies
q = p or q = p′.

This lemma easily yields the lower bound for pseudoslice functions.

Theorem 8.4. Let f be a monotone k-homogeneous union-free function. Then
any multilinear circuit which computes the t-pseudoslice of f such that t ≥ 2k
must have at least |PI (f)| − 1 OR gates (just as many as the DNF of this func-
tion).

Proof. We adapt the proof of Lemma 5.9. The idea is to ignore the long prime
implicants of the pseudoslice functions. We use Lemma 8.3 in place of Lemma
5.8(ii). This yields the following imitations of Claim 5.10 and Claim 5.11:

Claim 8.5. Let g be an AND gate in a monotone multilinear circuit for the t-
pseudoslice f ′t of f with inputs g1 and g2. If PI (g1) is not empty, then there
exists a monom m in PI (g1) ∪ PI (g2) such that m ⊆ p for all prime implicants
p ∈ PI (f) ∩ PIg (f ′t).
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Claim 8.6. Let g be a gate in a monotone multilinear circuit for the t-pseudoslice
f ′t of f such that PI (g) 6= ∅. Then

(i) there is some m in PI (g) such that m ⊆ p for all prime implicants p ∈
PI (f) ∩ PIg (f ′t), or

(ii) there is some path w from g to the output that is consistent with all prime
implicants p ∈ PI (f) ∩ PIg (f ′t).

Using the same kind of circuit modi�cations as in the proof of Lemma 5.9,
we are able to transform the original circuit for f ′t into a broom-like formula for
a function f̃ such that PI

(
f̃
)
⊇ PI (f). The lower bound then follows with

Lemma 5.12.

Since the function CLIQUE (n, s) is s (s− 1) /2-homogeneous, we obtain the
following lower bound.

Corollary 8.7. Any multilinear circuit which computes the t-pseudoslice of
CLIQUE (n, s) such that t ≥ s (s− 1) must have at least

(
n
s

)
− 1 OR gates.

The function POLY (q, s) is by de�nition q-homogeneous.

Corollary 8.8. Any multilinear circuit which computes the t-pseudoslice of
POLY (q, s) such that s ≤ q/2 and t ≥ 2q must have at least qs − 1 OR gates.

Next we show that our lower bounds for monotone Σ4-circuits also hold for
certain pseudoslices.

Theorem 8.9. Let f ′t be the t-pseudoslice of a monotone k-homogeneous s-
disjoint function f such that |PI (f)| ≤ (k/2s)k/2s and t ≥ k2/2s. Then every
monotone Σ4-circuit for f ′t must have at least |PI (f)| − 1 OR gates.

Proof. First we prove a version of Lemma 7.4 that also holds for functions f̃ whose
prime implicants are the prime implicants of f and perhaps some additional prime
implicants of length more than t. We can proceed as in the proof of Lemma 7.4.
We only need to deal with prime implicants of f . We determine an implicant
mr of the given Π3-circuit for f̃ in the same way. This implicant has at most
rk ≤ k2/2s variables. Hence, the monom mr must also be an implicant of f , and
we again �nd a contradiction with Lemma 7.3(ii).

We now adapt the proof of Theorem 7.6 in order to make it work for the
pseudoslices we are dealing with here. We can basically leave it unchanged.
Again, we only deal with prime implicants of f . In the proof of Theorem 7.6 we
assume w.l.o.g. that no Π1-subcircuit depends on more than s− 1 variables. We
give instructions there for modifying the circuit to make it meet this requirement.
In the case of computing pseudoslices, these modi�cations may alter the function
computed by the circuit, but we always preserve the prime implicants of f . As a
result, we obtain a Σ4-circuit that computes a function f̃ as described above. So
we can apply the modi�ed version of Lemma 7.4 in the same way as we applied
Lemma 7.4 in the proof of Theorem 7.6. This yields the lower bound.
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Corollary 8.10. Any monotone Σ4-circuit which computes the t-pseudoslice of
POLY (q, s) such that s ≤ √

q/2 and t ≥ q2/2s must have at least qs − 1 OR
gates.



Chapter 9

Conclusion

We prove optimal lower bounds on the number of OR gates for multilinear cir-
cuits and monotone Σ4-circuits. These kinds of circuits need as many OR gates
as the DNFs of the functions considered. This incompressibility is an interest-
ing property of the functions we study here, namely the clique function and the
polynomial function. When dealing with more general circuit models, this may
make it easier to prove lower bounds for the clique function and the polynomial
function. We give an upper bound for the clique function in order to show that
monotone circuits for the clique function require less OR gates than the respec-
tive DNFs in general. Hence, our incompressibility results for multilinear circuits
computing the clique function cannot be extended to unrestricted monotone cir-
cuits. While our upper bound for the clique function also holds for monotone
Σ4-circuits, we give a class of polynomial functions whose monotone Σ4-circuits
are also incompressible. Thus, these polynomial functions are in this sense even
harder to compute than clique functions. This observation makes the polynomial
function interesting to study when looking for new lower bounds. It is an open
problem to �nd a non-trivial upper bound for the polynomial function. Finally,
we note that our lower bounds for multilinear circuits and monotone Σ4-circuits
also hold for certain pseudoslice functions. Since known lower bound arguments
for unrestricted monotone circuits seem to fail for pseudoslice functions, our lower
bounds could be a starting point for the improvement of lower bounds for unre-
stricted monotone circuits.
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Appendix A

The Method of Approximations

In this appendix we give the proofs that have been omitted in Section 3.3.

Theorem 3.13 ([32, 1]). For every monotone function f and every legitimate
lattice K, we have C+ (f) ≥ % (f,K).

Proof. Let S be a monotone circuit for f . We show that the distance of f to
K does not exceed the number of gates of S. To bound the distance of f to K,
we consider the approximator circuit S ′ we obtain by replacing the gates of S by
corresponding lattice operations. An AND gate is replaced by u, an OR gate is
replaced by t. The inputs to S ′ are the lattice elements A (x1) , . . . , A (xn) that
correspond to the variables x1, . . . , xn.

To prove the theorem, we need to �nd a lattice element A and pairs (A1, B1) ,
. . . , (At, Bt) of lattice elements such that equations (3.1) and (3.2) hold. As A,
we choose the lattice element computed by S ′. Through a topological sort of S,
we arrange the gates of S in an order g1, . . . , gt such that every input to some
gate gi is either a variable or is computed by some gate gj with j < i. As Ai and
Bi, we choose the inputs to the lattice operation in S ′ that corresponds to gate
gi of S.

We now prove a more general claim by induction.

Claim A.1. For all i, 1 ≤ i ≤ t, if f is the function computed by the gate gi in
S and if A is the result of the lattice operation corresponding to gi, the equations
(3.1) and (3.2) hold.

Proof. We prove the claim by induction on t. For t = 0, the function f is a
variable, and A = A (f). Assume that the claim holds for t − 1. We now show
that the equations hold for i = t. We consider the case that gt is an OR gate.
Let ft and ht be the functions computed at the inputs to gt. By the induction
hypothesis, we have

At ⊆ A (ft) ∪
t−1⋃
i=1

δt (Ai, Bi)
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and

Bt ⊆ A (ht) ∪
t−1⋃
i=1

δt (Ai, Bi) .

So if A is the result of the lattice operation corresponding to gi, then

A = At tBt = At ∪Bt ∪ δt (At, Bt)

⊆ A (ft) ∪ A (ht) ∪
t⋃

i=1

δt (Ai, Bi)

⊆ A (f) ∪
t⋃

i=1

δt (Ai, Bi) ,

so equation (3.1) holds. For the other equation, we note that the induction
hypothesis yields

A (ft) ⊆ At ∪
t−1⋃
i=1

δu (Ai, Bi)

and

A (ht) ⊆ Bt ∪
t−1⋃
i=1

δu (Ai, Bi) .

So if A is the result of the lattice operation corresponding to gi, then

A (f) = A (ft) ∪ A (ht)

⊆ At ∪Bt ∪
t−1⋃
i=1

δu (Ai, Bi)

⊆ At tBt ∪
t−1⋃
i=1

δu (Ai, Bi)

= A ∪
t−1⋃
i=1

δu (Ai, Bi)

⊆ A ∪
t⋃

i=1

δu (Ai, Bi) ,

so equation (3.2) holds too.
The case that gt is an AND gate is treated similarly.

The proof of the claim �nishes the proof of the theorem.

Lemma 3.14. For all r ≥ 2 and k ≥ 0, we have h (r, k) ≤ (r − 1)k.
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Proof. We prove the lemma by induction on r. For r = 2, it is easy to see that
h (r, k) = 1. Suppose that F contains two sets W1 and W2. We set U := W1∩W2.
If U ( W1, then we set W = W1. Otherwise, we have U ( W2, and we set
W = W1. In any case we see that F does not have property P (r, k).

Assume that the bound holds for r − 1. We now prove it for r. Let F have
property P (r, k). We pick some arbitrary set D ∈ F . For every subset C ⊆ D,
we de�ne

FC := {W − C |W ∈ F ∧W ∩D = C} .

We claim that FC has property P (r − 1, k − |C|). For the sake of contra-
diction, suppose that there are W ′, W ′

1, . . . ,W
′
r−1 ∈ FC and U ′ ( W ′ such that

W ′
i ∩ W ′

j ⊆ U ′ for all 1 ≤ i < j ≤ r − 1. Then we can de�ne W := W ′ ∪ C,
U := U ′ ∪ C, Wi := W ′

i ∪ C (for 1 ≤ i ≤ r − 1) and Wr := D. These sets satisfy
U ( W and Wi ∩Wj ⊆ U for all 1 ≤ i < j ≤ r. This contradicts the fact that F
has property P (r, k).

Using that FC has property P (r − 1, k − |C|) we can now prove the bound
on h (r, k) for r. By the inductive hypothesis, we have |FC | ≤ (r − 2)k−|C|. As a
result,

|F| =
∑
C⊆D

|FC | ≤
∑
C⊆D

(r − 2)k−|C|

=

|D|∑
i=0

(
|D|
i

)
(r − 2)k−i .

Since D has cardinality at most k, we have

|F| ≤
k∑

i=0

(
k

i

)
(r − 2)k−i .

Then the Binomial Theorem yields the desired bound |F| ≤ (r − 1)k.

A.1 Lemmas for Handling the Clique Function

Lemma 3.17. Let A ⊆ V (l), A ` W and O be a random (s− 1)-coloring of all
vertices. Then

P [W is properly colored by O and no set in A is properly colored by O]

≤

(
1− (s− 1) (s− 2) · · · (s− l)

(s− 1)l

)r

.

Proof. By de�nition, if A ` W , then there are W1, . . . ,Wr ∈ A such that
W1, . . . ,Wr ` W . For particular sets W1, . . . ,Wr with this property we have
the inequalities
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P [W is properly colored and no set in A is properly colored]

≤ P [W is properly colored and W1, . . . ,Wr are not properly colored]

≤ P [W1, . . . ,Wr are not properly colored |W is properly colored] .

If this probability is not 0, the sets W1, . . . ,Wr are distinct because if Wi = Wj,
then W ⊇ Wi, and Wi is properly colored if W is. So if the probability is not 0,
the events {Wi is not properly colored |W is properly colored} are independent
because Wi ∩Wj ⊆ W for i 6= j. This leads to

P [W1, . . . ,Wr are not properly colored |W is properly colored]

=
r∏

i=1

P [Wi is not properly colored |W is properly colored] .

We set pi := |Wi ∩W | and qi := |Wi \W |. This gives us

P [Wi is not properly colored |W is properly colored]

= 1− P [Wi is properly colored |W is properly colored]

= 1− (s− 1− pi) (s− 1− pi − 2) · · · (s− pi − qi)

(s− 1)qi
.

By using pi + qi = |W | ≤ l, we obtain

1− (s− 1− pi) (s− 1− pi − 2) · · · (s− pi − qi)

(s− 1)qi

≤ 1− (s− 1− pi) (s− 1− pi − 2) · · · (s− l)

(s− 1)l−pi

≤ 1− (s− 1) (s− 2) · · · (s− l)

(s− 1)l
.

Altogether we obtain the desired bound.

A.2 Lemmas for Handling the Polynomial Func-

tion

Lemma 3.20. If r ≤ q/3 + 1, then

δ+ (q, r, l) ≤ 3qs−d(l+1)/2e (r − 1)d(l+1)/2e .
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Proof. By de�nition, for lattice elements M, N ∈ K (q, r, l) we have

δu (M, N) = (dAe ∩ dBe) \ (dAe u dBe)
= (dAe ∩ dBe) \ (dA ∩Be)

for closed subsets A, B ⊆ E (l). Consider an element b in dAe ∩ dBe. There
must be minimal elements F1 ∈ A and F2 ∈ B such that b has ones in all entries
corresponding to the elements in F1∪F2. If |F1 ∪ F2| ≤ l, then b is in dA ∩Be, so
b 6∈ δu (dAe , dBe). We conclude that for every element b ∈ δu (dAe , dBe), there
is a set F of cardinality k ≥ d(l + 1) /2e in A ∪ B. Since the sets A and B are
closed and Corollary 3.15 also holds for closed subsets of E (l), each of them has
at most (r − 1)k minimal elements of cardinality k.

Consider a set F ⊆ GF (q) × GF (q) in A ∪ B with cardinality |F | = k. If
there are group elements g1, g2, g3 ∈ GF (q) such that g2 6= g3, (g1, g2) ∈ F and
(g1, g3) ∈ F , then there is no positive test graph which results from F because a
polynomial cannot map g1 to both g2 and g3. Hence, we only need to consider sets
F that �assign� values to |F | = k group elements. Since a polynomial of degree
at most s−1 is uniquely determined by images of s elements in its domain, there
are qs−k polynomials that comply with the assignments determined by F .

Altogether, for every possible cardinality k, d(l + 1) /2e ≤ k ≤ l, there are
at most 2 (r − 1)k minimal sets in A ∪ B, of which each can contribute qs−k

positive test graphs. We accordingly estimate the number of positive test graphs
in δu (M, N) as follows:

|δu (M, N) ∩ E+| ≤
l∑

k=d(l+1)/2e

2 (r − 1)k qs−k

= 2qs

l∑
k=d(l+1)/2e

(
r − 1

q

)k

< 2qs−d(l+1)/2e (r − 1)d(l+1)/2e
∞∑

k=0

(
r − 1

q

)k

≤ 2qs−d(l+1)/2e (r − 1)d(l+1)/2e
∞∑

k=0

(
1

3

)k

= 3qs−d(l+1)/2e (r − 1)d(l+1)/2e .

Lemma 3.21. We have
δ− (q, r, l) ≤ q2l (εl)r .

Proof. As for the clique function, we study the properties of implications W1, . . . ,
Wr ` W with respect to the random test graph. For the test graph G ∈ Bq2 ,
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let E (G) denote the subset of GF (q) × GF (q) whose entries are 1 in G. For
A ⊆ E (l), A ` W and particular sets W1, . . . ,Wr ∈ A such that W1, . . . ,Wr ` W
we have

P [W ⊆ E (G) ∧ ∀F ∈ A F 6⊆ E (G)]

≤ P [W ⊆ E (G) ∧W1 6⊆ E (G) ∧ . . . ∧Wr 6⊆ E (G)]

≤ P [W1 6⊆ E (G) ∧ . . . ∧Wr 6⊆ E (G) |W ⊆ E (G)] .

If this probability is not 0, the sets W1, . . . ,Wr are distinct because if Wi = Wj,
then W ⊇ Wi, and Wi ⊆ E (G) if W ⊆ E (G). If W1, . . . ,Wr are distinct, then,
by the de�nition of the implication, the events {Wi 6⊆ E (G) |W ⊆ E (G)} are
independent. Exploiting this we conclude

P [W1 6⊆ E (G) ∧ . . . ∧Wr 6⊆ E (G) |W ⊆ E (G)]

=
r∏

i=1

P [Wi 6⊆ E (G) |W ⊆ E (G)] .

It is clear that

P [Wi 6⊆ E (G) |W ⊆ E (G)] = 1− (1− ε)|Wi\W | ≤ 1− (1− ε)l ≤ εl .

Altogether we have

P [W ⊆ E (G) ∧ ∀F ∈ A F 6⊆ E (G)] ≤ (εl)r . (A.1)

By de�nition,

δt (dAe , dBe) = d(A ∪B)∗e \ (dAe ∪ dBe) = d(A ∪B)∗e \ dA ∪Be .

Thus, the event G ∈ δt (dAe , dBe) = d(A ∪B)∗e \ (dAe ∪ dBe) only occurs if a
subset of E (G) is in A ∪ B but no subset of E (G) in (A ∪B)∗. We imagine
that the closure (A ∪B)∗ is constructed from A ∪B by successively adding new
sets W1, . . . ,Wp, where A ∪ B ∪ {W1, . . . ,Wi−1} ` Wi. According to (A.1), the
probability of the event

{a subset of E (G) is in A ∪B ∪ {W1, . . . ,Wi}
but no subset of E (G) is in A ∪B ∪ {W1, . . . ,Wi−1}}

is not more than (εl)r. The number p of sets added is at most |E (l)| ≤ q2l. The
bound on δ− (q, r, l) follows.


