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Abstract We prove optimal lower bounds for multilinear circuits and
for monotone circuits with bounded depth. These lower bounds state
that, in order to compute certain functions, these circuits need exactly
as many OR gates as the respective DNFs. The proofs exploit a property
of the functions that is based solely on prime implicant structure. Due
to this feature, the lower bounds proved also hold for approximations of
the considered functions that are similar to slice functions. Known lower
bound arguments cannot handle these kinds of approximations. In order
to show limitations of our approach, we prove that cliques of size n− 1
can be detected in a graph with n vertices by monotone formulae with
O (log n) OR gates.
Our lower bound for multilinear circuits improves a lower bound due
to Borodin, Razborov and Smolensky for nondeterministic read-once
branching programs computing the clique function.

1 Introduction

In this paper we consider Boolean circuits consisting of AND and OR gates.
These circuits have variables and negated variables as inputs. Unless otherwise
noted, all gates have fanin 2. A circuit without any negated inputs is called
monotone. A circuit whose gates have fanout 1 is a formula. A monom is a
conjunction of variables and negated variables. In this paper we regard monoms
also as sets. An implicant of a Boolean function f is a monom that does not
evaluate to 1 unless f does. An implicant is a prime implicant (minterm) if
no new implicant can be obtained by removing variables or negated variables
from the conjunction. For a Boolean function f , we denote the set of its prime
implicants by PI (f).

Until now the best known lower bounds for non-monotone circuits are linear.
However, there has been considerable success in proving superpolynomial lower
bounds for monotone circuits. Nowadays we have several powerful techniques
to prove lower bounds for monotone circuits: the method of approximations
(Razborov [1]); the method of probabilistic ampli�cations for estimating the

? Partially supported by DFG grant SCHN 503/2-2.



depth of monotone circuits (Karchmer and Wigderson [2]); the rank argument
for formulas (Razborov [3]) and span programs (Gál [4], Gál and Pudlák [5]).

Also, it is known that negation is almost powerless for so-called slice functions
(see e.g. monographs [6,7,8]). The t-slice function of f is a function of the form
f ∧ Tn

t ∨ Tn
t+1, where Tn

t is the t-th threshold function in n variables. A super-
polynomial lower bound for the monotone complexity of a slice function implies
a lower bound of the same order for its non-monotone complexity. Unfortunately,
the currently available arguments for proving monotone lower bounds seem to
be incapable of yielding su�cient lower bounds for slice functions. Therefore it
is justi�ed to seek new methods for proving monotone lower bounds.

One property of t-slice functions which seems to make the known arguments
unsuitable for them is that they accept all inputs with more than t ones. The
available proof methods rely on adequate sets of inputs which are mapped to 0 by
the function considered. That t-slice functions accept all inputs with more than
t ones seems to be an obstacle to constructing adequate sets of rejected inputs.
Therefore it is justi�ed to seek lower bound arguments for functions of the form
f ∨ Tn

t+1 that share this problematic property with slice functions; because of
this similarity, we will refer to functions of the form f ∨ Tn

t+1 as t-pseudoslice
functions in the sequel.

In this paper we make some steps in this direction. We propose proof methods
for some restricted circuit models that avoid these shortcomings. In particular,
the properties of functions that we exploit are based solely on the prime im-
plicant structure and do not rely on any additional information about prime
clauses or rejected inputs. In this sense our lower bound arguments are �asym-
metric�. Unlike the currently available arguments, they are applicable to certain
pseudoslice functions as well.

Moreover, the lower bounds we prove are optimal for the circuit classes con-
sidered. They state that multilinear circuits and circuits with su�ciently small
alternation depth require exactly as many OR gates as the DNFs of the consid-
ered functions. This means that by using these circuit types instead of DNFs, we
cannot even save a single OR gate! In other words, the DNFs are �incompressible�
when we restrict ourselves to the respective circuit classes.

2 Results

A Boolean circuit is multilinear if the inputs to each of its AND gates are com-
puted from disjoint sets of variables. To be more precise, for a gate g let var (g)
be the set of variables that occur in the subcircuit rooted at g. A Boolean circuit
is multilinear if var (g1) ∩ var (g2) = ∅ for each of its AND gates g with inputs
g1 and g2. Multilinear circuits have been studied in [9,10] ([10] uses a slightly
less restrictive de�nition). Multilinear circuits are a generalization of nondeter-
ministic read-once branching programs, which have received much attention (see
e.g. monograph [11]). Boolean multilinear circuits are related to arithmetic mul-
tilinear circuits which are characterized by the restriction that the highest power
of the polynomials computed at their gates is no larger than 1. Arithmetic multi-
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linear circuits have been studied in [12,13,14]. The direct arithmetic counterpart
to Boolean multilinear circuits are syntactic multilinear circuits, de�ned by Raz
[14].

It is clear that every Boolean function f can be computed by a multilinear
circuit with |PI (f)| − 1 OR gates: just take the DNF of f . Many functions
commonly referred to have multilinear circuits that are much smaller than their
DNFs. Consider the threshold function Tn

k as an example. The threshold function
Tn

k has
(
n
k

)
prime implicants, but can be computed by a multilinear circuit of size

O (nk) [11, chapter 4]. Thus, the gap between the size of a smallest multilinear
circuit which computes a certain function and the size of the DNF of this function
can be exponential. It is also known that the gap between multilinear complexity
and monotone complexity is exponential [9].

We identify a class of functions whose multilinear circuits require exactly
as many OR gates as their DNF, the so-called union-free functions. We call
a monotone Boolean function union-free if the union of any two of its prime
implicants does not contain a new prime implicant.

Theorem 1. Let f be a monotone union-free function. Then any multilinear
circuit for f must have at least |PI (f)| − 1 OR gates.

In the proof of this theorem we establish the following property of union-free
functions: among the optimal (with respect to the number of OR gates) circuits
there is one which is a formula, and for each of its AND gates, at least one input
to the gate computes a monom.

The clique function CLIQUE (n, s) is the function on
(
n
2

)
variables repre-

senting the edges of an undirected graph G whose value is 1 i� G contains an
s-clique. The clique function is a prominent example of a union-free function.

Lemma 1. The function CLIQUE (n, s) is union-free.

Proof. Suppose the union of two distinct s-cliques A and B contains all edges
of some third clique C. Since all three cliques are distinct and have the same
number of vertices, C must contain a vertex u which does not belong to A and
a vertex v which does not belong to B. This already leads to a contradiction
because either the vertex u (if u = v) or the edge {u, v} (if u 6= v) of C would
remain uncovered by the cliques A and B. ut

Corollary 1. Multilinear circuits for CLIQUE (n, s) require
(
n
s

)
− 1 OR gates

(just as many as the DNF of this function).

Because nondeterministic read-once branching programs can be simulated by
multilinear circuits in a natural way, Corollary 1 improves the lower bound of
exp (Ω (min (s, n− s))) given in [15] for nondeterministic read-once branching
programs computing CLIQUE (n, s).

Our lower bound for multilinear circuits also holds for certain pseudoslices
of union-free functions. We call a monotone function k-homogeneous if each of
its prime implicants has k variables.
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Theorem 2. Let f be a monotone k-homogeneous union-free function. Then
any monotone multilinear circuit which computes the t-pseudoslice of f such
that t ≥ 2k must have at least |PI (f)| − 1 OR gates.

The next result we discuss shows that the union-freeness property is not su�-
cient for proving good lower bounds for general monotone circuits. By Corollary
1, CLIQUE (n, n− 1) requires n− 1 OR gates to be computed by a multilinear
circuit. On the other hand, we have the following upper bound.

Theorem 3. The function CLIQUE (n, n− 1) can be computed by a monotone
formula with O (log n) OR gates.

This is apparently the �rst non-trivial upper bound for the monotone com-
plexity of the clique function. The only other upper bound for the clique function
that we are aware of is given in [6] and is only for its non-monotone complexity.

A circuit has alternation depth d i� d is the highest number of blocks of OR
gates and blocks of AND gates on paths from input to output gates. A Σd-circuit
(respectively, Πd-circuit) is a circuit with alternation depth d such that the
output gate is an OR gate (AND gate, respectively). We give incompressibility
results, similar to those for multilinear circuits, also for monotone Σ4-circuits.
A Boolean function is s-disjoint if any two of its prime implicants do not have
s variables in common.

Theorem 4. Let f be a monotone k-homogeneous s-disjoint function such that

|PI (f)| ≤ (k/2s)k/2s
. Then every monotone Σ4-circuit for f must have at least

|PI (f)| − 1 OR gates.

The same also holds for any t-pseudoslice of f such that t ≥ k2/2s.
Let POLY (q, s) be the polynomial function introduced by Andreev [16]. This

function has n = q2 variables corresponding to the points in the grid GF (q) ×
GF (q), where q is a prime power. The function POLY (q, s) accepts a q× q 0-1
matrix X = (xi,j) i� there is a polynomial p (z) of degree at most s − 1 over
GF (q) such that xi,p(i) = 1 for all i ∈ GF (q). If s < q/2, then POLY (q, s) is
another example of a union-free function.

The function POLY (q, s) is q-homogeneous. This function is also s-disjoint
because the graphs of two distinct polynomials of degree at most s − 1 cannot
share s points. This together with |PI (POLY (q, s))| = qs and Theorem 4 leads
to the following corollary.

Corollary 2. If s ≤ √
q/2, then any monotone Σ4-circuit for POLY (q, s) must

have at least qs − 1 OR gates (just as many as the DNF of this function).

The construction used in the proof of Theorem 3 yields a Π3-formula. Hence,
Theorem 4 suggests that it is harder to prove upper bounds for su�ciently
disjoint functions because an e�cient monotone circuit for them must be more
complicated than a Σ4-circuit. It is not even clear whether these polynomial
functions POLY (q, s) with s ≤ √

q/2 can be computed by general monotone
circuits that are smaller than the respective DNFs.

The rest of the paper is devoted to the proof of our theorems.
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3 Lower Bounds for Multilinear Circuits

In this section we prove Theorems 1 and 2. The following lemma allows us
to restrict ourselves to monotone multilinear circuits. It is a special case of a
theorem given in [17] for read-once nondeterministic machines.

Lemma 2. If f is a monotone function, then any optimal multilinear circuit
for f is monotone.

Our next lemma describes a restriction of multilinear circuits which leads
to exponential lower bounds for certain monotone Boolean functions. Given a
prime implicant p, we show that certain variables of p can be substituted by
some variables of another prime implicant p′, yielding a �derived� implicant of
the function. We say a path from a gate to the output of a circuit is consistent
with a monom m if m is an implicant of all the functions computed at the gates
along this path. We call a gate g necessary for an implicant m of a circuit S if
m is not an implicant of the circuit Sg→0 we obtain from S by replacing g with
the constant 0. Clearly, for every gate g which is necessary for an implicant m
of S, there is a path from g to the output of S which is consistent with m. Let
PIg (f) denote the set of prime implicants of f that g is necessary for. By PI (g)
we denote the set of prime implicants of the function computed at gate g.

Lemma 3 (Exchange Lemma). Let g be a gate in a monotone multilinear
circuit S for a function f , w be a path from g to the output of S and p, p′ ∈
PIg (f) such that w is consistent with p. Let m ⊆ p and m ⊆ p′ be distinct prime
implicants in PI (g).

(i) The path w is consistent with the derived monom (p \m)∪m′. This means
in particular that the derived monom (p \m) ∪m′ is also an implicant of f .

(ii) If f is union-free, then the identity p = (p′ \m′) ∪m holds.
(iii) If f is a t-pseudoslice of a monotone k-homogeneous union-free function

f∗ such that t ≥ 2k and p, p′ are prime implicants of f∗ as well, then the same
identity p = (p′ \m′) ∪m also holds.

Proof. (i) We have to show that (p \m) ∪ m′ is an implicant of all functions
computed along w (g = g1, . . . , gt). We prove this by induction on the length
of the path w. For g1 = g the claim is correct since (p \m) ∪ m′ is a superset
of m′ ∈ PI (g1). For the inductive step, assume that q ∈ PI (gi) such that
q ⊆ (p \m) ∪ m′. If gi+1 is an OR gate, then q is an implicant of gi+1. If
gi+1 is an AND gate, then let h be the other gate feeding it. We know that p
is an implicant of the function computed at gi+1. Hence, there must be some
mh ∈ PI (h) such that mh ⊆ p. Because the circuit is multilinear, we have
var (gi) ∩ var (h) = ∅. Gate g belongs to the subcircuit rooted at gate gi. We
conclude that var (g) ⊆ var (gi) and that var (g) ∩ var (h) = ∅. Since a variable
of a prime implicant of a gate must occur somewhere in the subcircuit rooted
at that gate, we conclude from m ∈ PI (g) and mh ∈ PI (h) that m ∩mh = ∅.
Now we can see that q ∪mh, an implicant of the function computed at gi+1, is
a subset of (p \m) ∪m′.
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(ii) According to (i), the monom (p \m) ∪m′ is an implicant of f . Clearly,
(p \m) ∪ m′ ⊆ p ∪ p′. Since f is union-free, this implies p ⊆ (p \m) ∪ m′ or
p′ ⊆ (p \m) ∪ m′. Because m and m′ are distinct prime implicants, we have
m 6⊆ m′ and m 6⊇ m′. The inclusion p ⊆ (p \m) ∪ m′ is impossible because
m 6⊆ m′. So p′ ⊆ (p \m) ∪m′ holds, this implies m′ ⊇ p′ \ p.

Since its assumptions are symmetrical, claim (i) also implies that (p′ \m′)∪m
is an implicant of f . Arguing in the same way as above we conclude that p ⊆
(p′ \m′)∪m. Since m′ ⊇ p′ \ p, we have (p′ \m′)∪m ⊆ p. Because p is a prime
implicant of f , this means p = (p′ \m′) ∪m.

(iii) We observe that the assumptions allow us to reason the same way as in
(ii). Again, the monom (p \m)∪m′ is an implicant of f . We have |(p \m) ∪m′| ≤
2k because |p| = k and |m′| ≤ |p′| = k. Thus, (p \m) ∪ m′ must also be an
implicant of f∗. Since f∗ is union-free, we can conclude in the same way as in
(ii) that m′ ⊇ p′ \ p. As in (ii), (p′ \m′) ∪ m is an implicant of f and also of
f∗ since |(p′ \m′) ∪m| ≤ 2k. We may now proceed as in (ii) and conclude that
p = (p′ \m′) ∪m. ut

We call a monotone circuit broom-like if, for each of its AND gates with
inputs g1 and g2, |PI (g1)| = 1 or |PI (g2)| = 1 (or both). Thus, broom-like
circuits have a particularly simple structure, and there is a direct correspondence
between their prime implicants and their OR gates.

Lemma 4. Every monotone multilinear circuit S for a union-free function f
can be transformed into a broom-like formula for f with at most as many OR
gates as S.

Proof. We �rst transform S into a broom-like multilinear circuit for f without
an increase in the number of OR gates. For this we need to know the following.

Claim 1. Let g be an AND gate with inputs g1 and g2. Then there exists m in
PI (g1) ∪ PI (g2) such that m ⊆ p for all p ∈ PIg (f).

Proof. Suppose there is no suitable m in PI (g1). We show that then there must
be an m in PI (g2) such that m ⊆ p for all p in PIg (f). Since there is no suitable
m in PI (g1), PIg (f) cannot be empty. We pick some arbitrary p′ in PIg (f).
Because p′ is an implicant of the function computed at g, there must be some
m′

2 in PI (g2) such that m′
2 ⊆ p′. We prove that in fact

m′
2 ⊆ p for all p ∈ PIg (f) .

We distinguish two cases. First note that there must be an m′
1 in PI (g1) such

that m′
1 ⊆ p′.

Case 1 : m′
1 6⊆ p. Then there is some m1 in PI (g1) such that m1 ⊆ p,

since p is an implicant of the function computed at g. Lemma 3(ii) yields that
p = (p′ \m′

1) ∪ m1. Hence, m′
2 ⊆ p because m′

2 ⊆ p′ and m′
1 ∩ m′

2 = ∅ due to
the multilinearity of the circuit.

Case 2 : m′
1 ⊆ p. Note that there must be some p′′ ∈ PIg (f) such that

m′
1 6⊆ p′′ because, by our initial assumption, m′

1 ∈ PI (g1) cannot be a suitable
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choice of m. There must be some m′′
1 in PI (g1) with m′′

1 ⊆ p′′. Case 1 applies
to p′′ because m′

1 6⊆ p′′, and we conclude m′
2 ⊆ p′′. We use Lemma 3 again and

�nd that p = (p′′ \m′′
1)∪m′

1. Hence, m′
2 ⊆ p because m′

2 ⊆ p′′ and m′′
1 ∩m′

2 = ∅
due to the multilinearity of the circuit. ut

We describe a modi�cation that can be applied to every AND gate g which
prevents S from being broom-like. Let g1 and g2 be the gates that feed g. The
gate g prevents S from being broom-like, so |PI (g1)| > 1 and |PI (g2)| > 1. Let
m be the monom in PI (gi) (i ∈ {1, 2}) given by Claim 1. We add a new gate h
that computes m (along with the corresponding subcircuit for this computation).
Then we disconnect g from gi and feed g from h instead of gi. Clearly, the
resulting circuit S′ rejects all the inputs that the original circuit rejected, since
we are dealing with monotone circuits. Because S′ accepts all inputs that Sg→0

accepts, g must be necessary for any prime implicant p of S that is not a prime
implicant of S′. But according to Claim 1, after the modi�cation every such
p remains an implicant of the function computed at g. This way we obtain a
broom-like multilinear circuit S∗ for f without an increase in the number of OR
gates.

We now describe a way of transforming a broom-like multilinear circuit S∗

for f into a broom-like formula F for f without an increase in the number of
OR gates.

Claim 2. Let g be a gate in S∗. Then
(i) there is some m in PI (g) such that m ⊆ p for all p in PIg (f), or
(ii) there is some path w from g to the output of S∗ that is consistent with

all p ∈ PIg (f).

Proof. We show that if (i) does not hold, then (ii) follows. This proof has a
similar structure compared to the proof of the �rst claim. Since (i) does not
hold, PIg (f) cannot be empty. So there is some p′ ∈ PIg (f) and some path w′

from g to the output of S∗ that is consistent with p′. We prove that in fact

w′ is consistent with p for all p ∈ PIg (f) .

We distinguish two cases. First note that there is some m′ ∈ PI (g) with m′ ⊆ p′

because p′ is an implicant of the function computed at g.
Case 1 : m′ 6⊆ p. There must be some m ∈ PI (g) such that m ⊆ p because p is

an implicant of the function computed at g. Lemma 3 yields that p = (p′ \m′)∪m
and that w′ is consistent with p.

Case 2 : m′ ⊆ p. Because (i) does not hold, there is some p′′ in PIg (f) such
that m′ 6⊆ p′′. There must be some m′′ in PI (g) with m′′ ⊆ p′′. Case 1 applies
to p′′ because m′ 6⊆ p′′, and we conclude that w′ is consistent with p′′. Lemma 3
tells us that p = (p′′ \m′′) ∪m′ and that w′ is consistent with p. ut

We now describe a modi�cation that we carry out for every gate g of S∗ with
fanout larger than 1 in order to reduce its fanout to 1. As with the modi�cation
for making the circuit broom-like, we only have to check the prime implicants
for which g is necessary. We distinguish two cases according to Claim 2.
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Case 1 : There is some m in PI (g) such that m ⊆ p for all p in PIg (f). We
remove g from the circuit and replace all wires from g by subcircuits that each
compute m. The resulting circuit computes a function that is clearly implied by
all prime implicants p in PIg (f).

Case 2 : There is some path w from g to the output of S∗ that is consistent
with all p in PIg (f). We then cut all wires stemming from g that are not on
path w, i.e. we replace inputs to other gates from g by the constant 0. All
prime implicants in PIg (f) are preserved because after the modi�cation w is
still consistent with all of them. To see this, note that, due to the multilinearity
of the circuit, every AND gate on w can have at most one input that depends
on g (such an input must be on w itself). ut

The following lemma enables us to count the prime implicants of monotone
functions by counting the OR gates of their monotone broom-like formulas.

Lemma 5. Let F be a monotone broom-like formula computing f . Then F has
at least |PI (f)| − 1 OR gates.

Proof. The lemma can be proved by induction on the size of the formula. The
details are omitted. ut

Theorem 1 follows immediately from Lemma 4 together with Lemma 5.
To verify Theorem 2, we use Lemma 3(iii) in place of Lemma 3(ii). The

construction of Lemma 4 then yields a broom-like formula for a function f̃ such

that PI
(
f̃
)
⊇ PI (f). The lower bound then follows with Lemma 5.

4 An Upper Bound for the Clique Function

We will use the following lemma.

Lemma 6. Let G be a graph with n vertices. If its complement G does not
contain a triangle and does not have two edges which are not incident with a
common vertex, then G has an (n− 1)-clique.

Proof. Suppose G does not have an n−1-clique. Then G is not a star. Suppose G
does not have two edges which are not incident with a common vertex. Choose
arbitrary distinct edges e1 and e2 in G. Let e1 and e2 be incident with the
common vertex u. Since G is not a star, there is an edge e3 which is not incident
with u. Let e2 and e3 be incident with the common vertex v 6= u. e1 and e3 must
share the common vertex w, which is distinct from u and v. Hence, u, v and w
form a triangle in G. ut

Proof of Theorem 3 To design the desired Π3-formula for CLIQUE (n, n− 1)
we use a code C ⊆ Ak for some k over an alphabet A with a constant number
of symbols (independent of n) such that |C| ≥ n and the minimal distance d of
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C is larger than 3k/4. The existence of such a code of length k = O(log n) is
guaranteed by the Gilbert bound (see e.g. [18]).

We assign to each vertex x (and hence, to each (n− 1)-clique V \ {x}) its
own codeword code (x) ∈ C. For each 1 ≤ i ≤ k and a ∈ A, let Si,a be the
intersection of all (n−1)-cliques whose codes have symbol a in the i-th position.
Hence,

Si,a = V \ {x ∈ V | code (x) has symbol a in position i} . (1)

Let mi,a be the monom consisting of all variables which correspond to edges
having both their endpoints in Si,a (if |Si,a| ≤ 1, we set mi,a = 1). We give the
following Π3-formula F for CLIQUE (n, n− 1):

F =
k∧

i=1

∨
a∈A

mi,a .

Every (n− 1)-clique V \ {x} with code (x) = (a1, . . . , ak) is accepted by the
monom

∧k
i=1 mi,ai

because the clique V \ {x} contains all the cliques Si,ai
,

i = 1, . . . , k. Hence, every (n− 1)-clique is accepted by F . It remains to show
that F does not accept any graph without an (n− 1)-clique.

Let G be a graph accepted by F . Then there is a sequence a1, . . . , ak of
symbols in A such that G is accepted by the monom

∧k
i=1 mi,ai . For a vertex

x ∈ V , let

Px = {i | code (x) has symbol ai in position i} .

Since the code C has minimal distance d > 3k/4, this implies that for every two
distinct vertices x and y,

|Px ∩ Py| ≤ k − d < k/4 . (2)

Let {x, y} be an edge of the complement graph G. Then the edge {x, y}
cannot belong to any of the monoms m1,a1 , . . . ,mk,ak

, implying that x 6∈ Si,ai
or

y 6∈ Si,ai for all i = 1, . . . , k. According to (1) this means that for all i = 1, . . . , k,
code (x) or code (y) has symbol ai at position i. So we have

Px ∪ Py = [k] = {1, . . . , k} . (3)

Now we are able to show that G must contain an (n− 1)-clique. We do so by
showing that its complement G does not contain a triangle and does not contain
a pair of vertex disjoint edges. The result then follows with Lemma 6.

Assume �rst that G contains a triangle with vertices u, v and w. By (3), we
have that Pu ∪Pw = [k] and Pv ∪Pw = [k]. Taking the intersection of these two
equations yields

(Pu ∩ Pv) ∪ Pw = [k] .

But by (2), we have that |Pu ∩ Pv| < k/4, so |Pw| > 3k/4. Similarly we obtain
|Pu| > 3k/4, implying that |Pu ∩ Pw| > k/2, a contradiction with (2).
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Assume now that G contains a pair of vertex disjoint edges {u, v} and {x, y}.
By (3), we have Pu∪Pv = [k] and Px∪Py = [k]. Assume w.l.o.g. that |Pu| ≥ |Pv|.
Then |Pu| ≥ k/2. We know that

Pu = Pu ∩ [k] = Pu ∩ (Px ∪ Py) = (Pu ∩ Px) ∪ (Pu ∩ Py) .

Assume w.l.o.g. that |Pu ∩ Px| ≥ |Pu ∩ Py|. Then |Pu ∩ Px| ≥ |Pu|/2 ≥ k/4, a
contradiction with (2). ut

5 Lower Bounds for Monotone Σ4-Circuits

The following lemma shows that the union-freeness property is a special case
of the disjointness property. This lemma names the properties of su�ciently
disjoint functions that we exploit when proving the lower bound of Theorem 4.

Lemma 7. Let p1, ..., pr be prime implicants of a monotone Boolean function f
and m be an implicant of f . Let f be k-homogeneous and k/r-disjoint.

(i) If
⋃r

i=1 pi ⊇ m, then m ⊇ pi for some i.
(ii) If x1, . . . , xr are variables such that xi ∈ pi and xi 6∈ pj for i 6= j, then⋃r

i=1 (pi \ {xi}) is not an implicant of f .

Proof. (i) There must be some prime implicant p of f with m ⊇ p. Since⋃r
i=1 pi ⊇ p, p must share at least k/r variables with some pi. Because f is

k/r-disjoint, this implies p = pi. Claim (ii) is a direct consequence of (i). ut

The following lemma deals with Π3-circuits with gates of unbounded fanin.

Lemma 8. Let f be a monotone k-homogeneous and s-disjoint function. If r ≤
k/2s and h is a function such that h ≤ f (i.e., f evaluates to 1 if h does) and
|PI (h) ∩ PI (f)| ≥ r, then any monotone Π3-circuit for h with bottom fanin at
most s− 1 must have top fanin at least (k/2s)r

.

Proof. Let S be a monotone Π3-circuit with top fanin a and bottom fanin at
most s − 1. Let F1, . . . , Fa be the functions computed by the Σ2-subcircuits of
S that are inputs to the AND gate which is the output gate of S. The function
F computed by S can be represented in the form

F =
a∧

i=1

Fi .

Let a < (k/2s)r. We now show that the circuit S must then make an error,
i.e. that F 6= h. For the sake of contradiction, assume that F = h. We choose
arbitrary prime implicants p1, . . . , pr ∈ PI (h) ∩ PI (f). Our goal is to pick
x1 ∈ p1, . . . , xr ∈ pr suitable for Lemma 7(ii), yielding F 6= h.

We pick the xis in the order indicated by their indices. During this process
we consider the preliminary monoms

mt =
t⋃

i=1

(pi \ {xi}) , t = 1, . . . , r .
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The preliminary monom mt is available after the t-th step of the process. Finally,
mr is the desired implicant needed for the contradiction with Lemma 7(ii). Let
At denote the set of indices of the functions Fi which are not implied by mt,
i.e. i ∈ At i� mt is not an implicant of Fi.

Claim 3. There is always a choice of xt in order to make

|At| ≤
|At−1|
k/2s

.

Proof. We describe a choice of xt that makes At su�ciently small. For every i
in At−1 we choose some mi ∈ PI (Fi) with pt ⊇ mi. Every Fi has such a prime
implicant because pt is a prime implicant of h = F . As xt, we pick a variable of pt

that does not belong to any other of the prime implicants p1, . . . , pr. Since each
of the prime implicants can share at most s− 1 variables with each of the other
r − 1 prime implicants, the prime implicant pt has at least k − (s− 1) (r − 1)
variables which do not belong to any of the other prime implicants. Of these
�private� variables of pt, at most s − 1 can belong to some particular monom
mi we chose. If we add all the occurrences of the private variables of pt in the
monoms mi together, we count at most (s− 1) |At−1| occurrences. Using that
pt has at least k − (s− 1) (r − 1) private variables, we �nd that at least one of
these variables is in not more than |At−1| / (k/2s) of the chosen monoms. This
su�ciently �rare� variable is our choice of xt. Since only those i ∈ At−1 remain
in At for which xt belongs to the chosen monom mi, the desired bound for |At|
follows. ut

We now �nish the proof of Lemma 8. We start with |A0| = a < (k/2s)r.
According to the claim, we can always choose the x1, . . . , xr such that Ar is
empty. This means the �nally constructed monom mr is in fact an implicant of
F . ut

Proof of Theorem 4 (Sketch) Let S be a monotone Σ4-circuit with gates of
fanin 2 which computes a monotone k-homogeneous s-disjoint function f . We
assume that S has the smallest possible number of OR gates. The function f can
be represented, according to the structure of S, as a disjunction of functions fi

which are computed by the Π3-subcircuits of S: f =
∨

fi. Let fi be computed
by the Π3-circuit Si. Without loss of generality we can assume that no Π1-
subcircuit of any Si depends on more than s − 1 variables, i.e. every Si has
bottom fanin at most s− 1 when regarded as a circuit of unbounded fanin.

Every prime implicant of f must be a prime implicant of at least one of the fi.
Let R be the largest number of prime implicants of f that are prime implicants
of one particular fi = h. Let h be computed by the Π3-circuit Si = H. Under
our assumption that S is optimal with respect to the number of OR gates used,
we conclude that the case 2 ≤ R < k/2s cannot occur. Otherwise, by Lemma 8,
H would require at least (k/2s)R − 1 ≥ R2 − 1 OR gates and could be replaced
by a simple two-level circuit requiring only R− 1 OR gates.

11



In the case R = 1 the circuit S is essentially a DNF and needs |PI (f)| − 1
OR gates. In the remaining case R ≥ k/2s Lemma 8 yields that H has a top

fanin of at least (k/2s)k/2s. The inequality (k/2s)k/2s ≥ |PI (f)| is assumed by
Theorem 4, so the desired lower bound for the number of OR gates in S follows.

Acknowledgement I am grateful to Stasys Jukna for helpful discussions.
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