
On the Incompressibility of Monotone DNFs

Matthias P. Krieger∗

Johann Wolfgang Goethe-Universität Frankfurt am Main
Institut für Informatik

Lehrstuhl für Theoretische Informatik
Robert-Mayer-Straße 11–15

D-60054 Frankfurt am Main, Germany
mkrieger@cs.uni-frankfurt.de

Abstract

We prove optimal lower bounds for multilinear circuits and for monotone circuits
with bounded depth. These lower bounds state that, in order to compute certain
functions, these circuits need exactly as many OR gates as the respective DNFs.
The proofs exploit a property of the functions that is based solely on prime implicant
structure. Due to this feature, the lower bounds proved also hold for approximations
of the considered functions that are similar to slice functions. Known lower bound
arguments cannot handle these kinds of approximations. In order to show limitations
of our approach, we prove that cliques of size n− 1 can be detected in a graph with
n vertices by monotone formulas with O (log n) OR gates.

Our lower bound for multilinear circuits improves a lower bound due to Borodin,
Razborov and Smolensky for nondeterministic read-once branching programs com-
puting the clique function.

1 Introduction

Until now the best known lower bounds for non-monotone circuits are linear. However,
there has been considerable success in proving superpolynomial lower bounds for monotone
circuits. Nowadays we have several powerful techniques to prove lower bounds for mono-
tone circuits: the method of approximations (Razborov [1]); the method of probabilistic
amplifications for estimating the depth of monotone circuits (Karchmer and Wigderson
[2]); the rank argument for formulas (Razborov [3]) and span programs (Gál [4], Gál and
Pudlák [5]).

∗Partially supported by DFG grant SCHN 503/2-2.

1

Also, it is known that negation is almost powerless for so-called slice functions (see
e.g. monographs [6, 7, 8]). The t-slice function of f is the function f ∧ T n

t ∨ T n
t+1, where

T n
t is the t-th threshold function of n variables. The function T n

t assumes the value 1
if and only if at least t of its n inputs are 1. A superpolynomial lower bound on the
monotone complexity of a slice function implies a lower bound of the same order on its
non-monotone complexity. Unfortunately, the currently available arguments for proving
monotone lower bounds seem to be incapable of yielding sufficient lower bounds for slice
functions. Therefore it is justified to seek new methods for proving monotone lower bounds.

One property of t-slice functions which seems to make the known arguments unsuit-
able for them is that they accept all inputs with more than t ones. The available proof
methods rely on adequate sets of inputs which are mapped to 0 by the function considered.
That t-slice functions accept all inputs with more than t ones seems to be an obstacle to
constructing adequate sets of rejected inputs. Therefore it is justified to seek lower bound
arguments for functions of the form f ∨ T n

t+1 that share this problematic property with
slice functions; because of this similarity, we will refer to functions of the form f ∨ T n

t+1 as
t-pseudoslice functions in the sequel.

In this paper we make some steps in this direction. We propose proof methods for some
restricted circuit models that avoid these shortcomings. In particular, the properties of
functions that we exploit are based solely on the prime implicant structure and do not rely
on any additional information about prime clauses or rejected inputs. In this sense our
lower bound arguments are “asymmetric”. Unlike the currently available arguments, they
are applicable to certain pseudoslice functions as well.

Moreover, the lower bounds we prove are optimal for the circuit classes considered.
They state that multilinear circuits and circuits with sufficiently small alternation depth
require exactly as many OR gates as the DNFs of the considered functions. This means
that by using these circuit types instead of DNFs, we cannot even save a single OR gate!
In other words, the DNFs are incompressible when we restrict ourselves to the respective
circuit classes. However, we also give an upper bound that shows that some of these DNFs
are still highly compressible in the case of general monotone circuits.

We now sketch our main results and describe the organization of the paper. In Section 2
we introduce union-free functions and multilinear circuits. A monotone Boolean function
is union-free if the union of any two of its prime implicants does not contain a new prime
implicant. We identify two prominent union-free functions: the clique function and the
so-called polynomial function (which is union-free for suitable parameters). A Boolean
circuit is multilinear if the inputs to each of its AND gates are computed from disjoint sets
of variables. Multilinear circuits are a generalization of nondeterministic read-once branch-
ing programs and ordered binary decision diagrams, which have received much attention
(see e.g. monograph [9]). Hence, multilinear circuits are capable of computing numerous
functions efficiently. We show that multilinear circuits for union-free functions are incom-
pressible. Thus, multilinear circuits are inefficient for union-free functions, although they
are efficient for many other functions.

In Section 3 we show that our lower bounds for multilinear circuits cannot be extended
to unrestricted monotone circuits. We prove that cliques of size n− 1 in an n-vertex graph

2

can be detected by monotone formulas with O (log n) OR gates. The DNF of this clique
function has n−1 OR gates. Since the clique function is union-free, multilinear circuits for
this clique function are incompressible and require n− 1 OR gates as well. Hence, general
monotone formulas for this clique function can be much more efficient than multilinear
circuits. By exploiting that this particular clique function is a projection of almost all
clique functions, we are able to show that general monotone circuits require less OR gates
than DNFs for clique functions in general. The formulas we construct for proving this
upper bound are Π3-formulas, i.e. they are conjunctions of disjunctions of monoms.

In Section 4 we prove lower bounds for monotone circuits of bounded depth. Specif-
ically, we show that monotone Σ4-circuits for a certain class of polynomial functions are
incompressible, i.e. they require at least as many OR gates as the DNFs of the respective
functions. The class of Σ4-circuits includes the Π3-formulas, for which we proved the upper
bound in the previous section. This means that the polynomial functions studied in this
section are in a certain sense harder to compute than clique functions, whose Π3-formulas
are compressible. We still do not know any non-trivial upper bound for the polynomial
function.

In Section 5 we prove that our lower bounds for multilinear circuits and monotone
Σ4-circuits also hold for certain pseudoslice functions. We show how the proofs we gave
for our lower bounds can easily be adapted to make them work for pseudoslices.

We first make some preliminary remarks before discussing the results in detail. In this
paper we consider Boolean circuits consisting of AND and OR gates. Sometimes we also
introduce gates that assume the constant values 0 and 1. The circuits have variables and
negated variables as inputs. Unless otherwise noted, all gates have fanin 2. A circuit
without any negated inputs is called monotone. A circuit whose gates have fanout 1 is a
formula. A monom is a conjunction of variables and negated variables. In this paper we
regard monoms also as sets. Therefore, we can compare monoms as we compare sets. For
example, for monoms m1 and m2 we write m1 ⊆ m2 if every variable and negated variable
of m1 also belongs to m2. An implicant of a Boolean function f is a monom that does not
evaluate to 1 unless f does. An implicant is a prime implicant if no new implicant can be
obtained by removing variables or negated variables from the conjunction. For a Boolean
function f , we denote the set of its prime implicants by PI (f). We call a monotone
function k-homogeneous if each of its prime implicants has k variables. A disjunctive
normal form (DNF) is a disjunction of monoms. In this paper we always presume that
a DNF is minimal, i.e. the DNF consists of a minimal number of monoms. The minimal
DNF of a monotone function is the disjunction of all the prime implicants.

2 Multilinear Circuits Are Inefficient for Union-Free

Functions

In this section we introduce multilinear circuits and union-free functions. We show that
multilinear circuits for union-free functions are incompressible.

3

2.1 Union-Free Functions

The following definition of union-free functions will allow us to prove optimal lower bounds
for multilinear circuits.

Definition 1. A monotone Boolean function is union-free if the union of any two of its
prime implicants does not contain a new prime implicant.

The clique function CLIQUE (n, s) is a function of
(

n
2

)
variables representing the edges

of an undirected n-vertex graph G. The function CLIQUE (n, s) assumes the value 1 iff
G contains an s-clique. This function is a prominent example of a union-free function.

Lemma 1. The function CLIQUE (n, s) is union-free.

Proof. Suppose the union of two distinct s-cliques A and B contains all edges of some third
clique C. Since all three cliques are distinct and have the same number of vertices, C must
contain a vertex u which does not belong to A and a vertex v which does not belong to
B. This already leads to a contradiction because either the vertex u (if u = v) or the edge
{u, v} (if u 6= v) of C would remain uncovered by the cliques A and B.

Let POLY (q, s) be the polynomial function introduced by Andreev [10]. This function
has n = q2 variables corresponding to the points in the grid GF (q) × GF (q), where q
is a prime power. The function POLY (q, s) accepts a q × q 0-1 matrix X = (xi,j) iff
there is a polynomial f (z) of degree at most s − 1 over GF (q) such that xi,f(i) = 1 for
all i ∈ GF (q). For certain parameters the polynomial function is another example of a
union-free function.

Lemma 2. If s ≤ q/2, then the function POLY (q, s) is union-free.

Proof. The prime implicants of the function POLY (q, s) are of the form
∧

i∈GF (q) xi,f(i)

for some polynomial f (z) of degree at most s− 1. The function POLY (q, s) is s-disjoint,
i.e. two distinct prime implicants of this function cannot have s variables in common.
Otherwise, two distinct polynomials of degree at most s− 1 would assume the same values
at s points, which is impossible.

To prove the lemma, assume that p1, p2 and p3 are distinct prime implicants of
POLY (q, s) and that p3 ⊆ p1 ∪ p2. Then p3 must have q/2 ≥ s variables in common
with p1 or p2, a contradiction.

2.2 Multilinear Circuits

Since the term “multilinear” has been first used to describe a restriction on arithmetic
circuits, we discuss arithmetic multilinear circuits before turning to Boolean multilinear
circuits. An arithmetic circuit performs computations in a field. The gates of the circuit
compute the field operations + and ×. The inputs of the circuit are variables and field
elements.

4

A polynomial is multilinear if in each of its monomials the power of every variable is at
most one. An arithmetic circuit is multilinear if every polynomial computed by some gate
of the circuit is multilinear. Multilinear arithmetic circuits were defined in [11]. Raz [12]
proved a superpolynomial gap between the size of multilinear arithmetic circuits and the
size of multilinear arithmetic formulas.

Raz [13] introduced syntactic multilinear circuits which are slightly more restricted
than multilinear circuits. In order to define syntactic multilinear circuits, let var (g) be
the set of variables that occur in the subcircuit rooted at the gate g of some circuit. An
arithmetic circuit is syntactic multilinear if var (g1) ∩ var (g2) = ∅ for each of its ×-gates
with inputs g1 and g2. Every syntactic multilinear circuit is multilinear, but not vice
versa. Raz [13] showed that multilinear formulas can be converted to syntactic multilinear
formulas without an increase in size.

We now turn to Boolean multilinear circuits. In order to define Boolean multilinear
circuits, let var (g) again be the set of variables that occur in the subcircuit rooted at the
gate g of some circuit.

Definition 2. A Boolean circuit is multilinear if var (g1) ∩ var (g2) = ∅ for each of its
AND gates g with inputs g1 and g2.

In other words, a Boolean circuit is multilinear if the inputs to each of its AND gates are
computed from disjoint sets of variables. Our definition of Boolean multilinear circuits is
equivalent to the definition of multilinear circuits in [14]. This notion of Boolean multilinear
circuits closely mimics the definition of arithmetic syntactic multilinear circuits. In [15]
a slightly less restrictive definition of Boolean multilinear circuits is used which resembles
the concept of arithmetic multilinear circuits more closely. While it may be possible to
prove our results about multilinear circuits using the more general definition of [15], this
appears to require significantly more sophisticated proofs, so we decide to limit ourselves
to the more restrictive notion of multilinearity.

It is clear that every Boolean function f can be computed by a multilinear circuit
with |PI (f)| − 1 OR gates: just take the DNF of f . Multilinear Boolean circuits are a
generalization of nondeterministic read-once branching programs and ordered binary deci-
sion diagrams. A simulation of nondeterministic branching programs by circuits is given
in [16] (there nondeterministic branching programs are referred to as directed switching
networks). Thus, many functions commonly referred to have multilinear circuits that are
much smaller than their DNFs. Consider the threshold function T n

k as an example. The
threshold function T n

k has
(

n
k

)
prime implicants, but can be computed by a multilinear

circuit of size O (nk). The construction of an efficient ordered binary decision diagram for
T n

k can be found in [9, chapter 4]. Hence, the gap between the size of a smallest multilinear
circuit which computes a certain function and the size of the DNF of this function can be
exponential.

Let CONN (n) be the function whose argument is the adjacency matrix of a directed
n-vertex graph and assumes the value 1 if and only if the graph is connected. Sengupta
and Venkateswaran have proved the following theorem.

5

Theorem 1 ([14]). Multilinear circuits for CONN (n) have at least
√

1
n
·
(

4
3

)n−1
gates.

Since the function CONN (n) can be computed by monotone circuits of polynomial
size, this shows that the gap between multilinear complexity and monotone complexity is
also exponential. Let BPM (n) be the function which decides if an n-vertex bipartite graph
has a perfect matching. The following theorem is from Ponnuswami and Venkateswaran.

Theorem 2 ([15]). Multilinear circuits for BPM (n) have at least Ω (20.459n) gates.

In the next subsection we prove lower bounds for multilinear circuits of some other
functions. While we use a slightly less general notion of multilinearity than in [15], we are
able to prove stronger lower bounds which are even optimal.

The following lemma allows us to restrict ourselves to monotone multilinear circuits.
It is a special case of a theorem given in [17] for read-once nondeterministic machines. We
give an alternative proof that uses the specific restrictions of multilinear circuits.

Lemma 3. If f is a monotone function, then any optimal multilinear circuit for f is
monotone.

Proof. Let S be an optimal multilinear circuit for f . We take the notion of a parse-graph
G of S from [14]: The parse-graph G includes the output of S; for any OR gate v of G,
exactly one immediate predecessor of v is included as its only predecessor in G; and for any
AND gate v included in G, both immediate predecessors are included as predecessors of v
in G. The parse-graph G can be viewed as a kind of circuit that accepts a subset of the
inputs that S accepts. Since S is multilinear, a variable can occur at most once in G, so a
variable and its negation can never both appear in G. This means that the conjunction of
all variables and negated variables in G is consistent, and an implicant of f . So the set of
all non-negated variables in G must contain a prime implicant of f .

Every input that a circuit accepts is accepted by one of its parse-graphs. Therefore,
we can set all inputs of a multilinear circuit for f that are fed from negated variables to
1. Clearly, the variable set of every parse-graph of the resulting circuit will still contain a
prime implicant of f because f is monotone.

2.3 The Lower Bound for Multilinear Circuits

We now give the lower bound for multilinear circuits:

Theorem 3. Let f be a monotone union-free function. Then any multilinear circuit for f
must have at least |PI (f)| − 1 OR gates.

Corollary 1. Multilinear circuits for CLIQUE (n, s) require
(

n
s

)
− 1 OR gates (just as

many as the DNF of this function).

Because nondeterministic read-once branching programs can be simulated by multi-
linear circuits in a natural way, the bound of exp (Ω (s log (n/s))) given by Corollary 1
improves the bound of exp (Ω (min (s, n− s))) given in [18] for nondeterministic read-once
branching programs computing CLIQUE (n, s).

6

Corollary 2. If s ≤ q/2, then any multilinear circuit for POLY (q, s) has qs−1 OR gates
(just as many as the DNF of this function).

For the proof of Theorem 3 we first give a lemma that describes a restriction of mul-
tilinear circuits. This restriction leads to exponential lower bounds for certain monotone
Boolean functions. Given a prime implicant p, we show that, depending on the circuit,
certain variables of p can be substituted by some variables of another prime implicant p′.
This yields a “derived” implicant of the function computed by the circuit. If the function
is union-free, we are able to reason further about the derived implicant.

We say a path from a gate to the output of a circuit is consistent with a monom m if
m is an implicant of all the functions computed at the gates along this path. We call a
gate g necessary for an implicant m of a circuit S if m is not an implicant of the circuit
Sg→0 we obtain from S by replacing g with the constant 0.

Lemma 4. For every gate g which is necessary for an implicant m of S, there is a path
from the output of S to g which is consistent with m.

Proof. First note that m is an implicant of the function computed by an OR gate h iff m
is an implicant of one of the inputs to h. Analogously, the implicant m is an implicant of
an AND gate h iff m is an implicant of both of the inputs to h.

We find a consistent path in S from the output to g by descending into the circuit
starting at the output. Doing so, we compare the two circuits S and Sg→0 with each other.
We require that our path consists of gates that are not implied by m in the modified circuit
Sg→0. We start with the output gate as the first gate of the path. Assume we have followed
the path g1, . . . , gi and we are not done since gi 6= g. We must pick the next gate gi+1 on
our path. If gi is an OR gate, then we choose gi+1 as the input to gi that is implied by
m in S. Since both inputs to gi are not implied by m in Sg→0, our choice of gi+1 is also
not implied by m in Sg→0, as we require. If gi is an AND gate, then we choose gi+1 as the
input to gi that is not implied by m in Sg→0. Since both inputs to gi are implied by m in
S, our choice of gi+1 is also implied by m in S, as we require.

Finally we must reach g while constructing the path, since every leaf node in Sg→0

which is not g does not differ from the corresponding node in S.

Let PIg (f) denote the set of prime implicants of f that g is necessary for. By PI (g)
we denote the set of prime implicants of the function computed at gate g.

Lemma 5 (Exchange Lemma). Let g be a gate in a monotone multilinear circuit S for
a function f and p, p′ be prime implicants in PIg (f). Let m ⊆ p and m′ ⊆ p′ be distinct
prime implicants in PI (g).

(i) If w is a path from g to the output of S that is consistent with p, then w is consistent
with the derived monom (p \m) ∪ m′. This means in particular that the derived monom
(p \m) ∪m′ is also an implicant of f .

(ii) If f is union-free, then the identity p = (p′ \m′) ∪m holds.

7

Proof. (i) We first note that the substitution of the variables of m by the variables of m′

is valid at gate g. Then we observe that the substitution remains valid along the path w
due to the multilinearity of the circuit.

We have to show that (p \m) ∪ m′ is an implicant of all functions computed along w
(g = g1, . . . , gt). We prove this by induction on the length of the path w. For g1 = g
the claim is correct since (p \m) ∪ m′ is a superset of m′ ∈ PI (g1). For the inductive
step, assume that q ∈ PI (gi) such that q ⊆ (p \m) ∪ m′. If gi+1 is an OR gate, then
q is an implicant of gi+1. If gi+1 is an AND gate, then let h be the other gate feeding
it. We know that p is an implicant of the function computed at gi+1. Hence, there must
be some mh ∈ PI (h) such that mh ⊆ p. Because the circuit is multilinear, we have
var (gi) ∩ var (h) = ∅. Gate g belongs to the subcircuit rooted at gate gi. We conclude
that var (g) ⊆ var (gi) and that var (g)∩var (h) = ∅. Since a variable of a prime implicant
of a gate must occur somewhere in the subcircuit rooted at that gate, we conclude from
m ∈ PI (g) and mh ∈ PI (h) that m ∩mh = ∅. Now we can see that q ∪mh, an implicant
of the function computed at gi+1, is a subset of (p \m) ∪m′.

(ii) According to Lemma 4, there is path from g to the output of S that is consistent
with p, because g is necessary for p. Therefore, according to (i), the monom (p \m)∪m′ is
an implicant of f . Clearly, we have (p \m)∪m′ ⊆ p∪p′. Since f is union-free, this implies
p ⊆ (p \m)∪m′ or p′ ⊆ (p \m)∪m′. Because m and m′ are distinct prime implicants, we
have m 6⊆ m′ and m 6⊇ m′. The inclusion p ⊆ (p \m) ∪m′ is impossible because m 6⊆ m′.
So p′ ⊆ (p \m) ∪m′ holds, this implies m′ ⊇ p′ \ p.

Since its assumptions are symmetrical, claim (i) also implies that (p′ \m′) ∪ m is an
implicant of f . Arguing in the same way as above we conclude that p ⊆ (p′ \m′) ∪ m.
Since m′ ⊇ p′ \ p, we have (p′ \m′) ∪ m ⊆ p. From the two inclusions p ⊆ (p′ \m′) ∪ m
and (p′ \m′) ∪m ⊆ p we derive p = (p′ \m′) ∪m.

We now show how to transform a multilinear circuit for a union-free function into a
normal form. We call a monotone circuit broom-like if, for each of its AND gates with
inputs g1 and g2, |PI (g1)| = 1 or |PI (g2)| = 1 (or both). Thus, broom-like circuits have
a particularly simple structure, and there is a direct correspondence between their prime
implicants and their OR gates.

Lemma 6. Every monotone multilinear circuit S for a union-free function f can be trans-
formed into a broom-like formula for f with at most as many OR gates as S.

Proof. We first transform S into a broom-like multilinear circuit for f without an increase
in the number of OR gates. For this we need to know the following.

Claim 1. Let g be an AND gate with inputs g1 and g2. If PI (g1) is not empty, then there
exists a monom m in PI (g1) ∪ PI (g2) such that m ⊆ p for all p ∈ PIg (f).

Proof. Suppose there is no suitable m in PI (g1). We show that then there must be an m
in PI (g2) such that m ⊆ p for all p in PIg (f). Since there is no suitable m in PI (g1),
PIg (f) cannot be empty. We pick some arbitrary p′ in PIg (f). Because p′ is an implicant

8

of the function computed at g, there must be some m′
2 in PI (g2) such that m′

2 ⊆ p′. We
prove that in fact

m′
2 ⊆ p for all p ∈ PIg (f) .

We distinguish two cases. First note that there must be some m′
1 in PI (g1) such that

m′
1 ⊆ p′.
Case 1 : m′

1 6⊆ p. Then there is some m1 in PI (g1) such that m1 ⊆ p, since p is an
implicant of the function computed at g. Since g is an AND gate, the input g1 is also
necessary for p. Therefore we can apply Lemma 5(ii), which yields that p = (p′ \m′

1)∪m1.
Hence, m′

2 ⊆ p because m′
2 ⊆ p′ and m′

1 ∩m′
2 = ∅ due to the multilinearity of the circuit.

Case 2 : m′
1 ⊆ p. Note that there must be some p′′ ∈ PIg (f) such that m′

1 6⊆ p′′

because, by our initial assumption, m′
1 ∈ PI (g1) cannot be a suitable choice of m. Case

1 applies to p′′ because m′
1 6⊆ p′′, and we conclude m′

2 ⊆ p′′. There must be some m′′
1 in

PI (g1) with m′′
1 ⊆ p′′. We use Lemma 5 again and find that p = (p′′ \m′′

1) ∪m′
1. Hence,

m′
2 ⊆ p because m′

2 ⊆ p′′ and m′′
1 ∩m′

2 = ∅ due to the multilinearity of the circuit.

We describe a modification that can be applied to every AND gate g which prevents
S from being broom-like. Let g1 and g2 be the gates that feed g. The gate g prevents S
from being broom-like, so |PI (g1)| > 1 and |PI (g2)| > 1. Let m be the monom in PI (gi)
(i ∈ {1, 2}) given by Claim 1. We add a new gate h that computes m (along with the
corresponding subcircuit for this computation). Then we disconnect g from gi and feed g
from h instead of gi. Clearly, the resulting circuit S ′ rejects all the inputs that the original
circuit rejected, since we are dealing with monotone circuits. Because S ′ accepts all inputs
that Sg→0 accepts, g must be necessary for any prime implicant p of S that is not a prime
implicant of S ′. But according to Claim 1, after the modification every such p remains
an implicant of the function computed at g. This way we obtain a broom-like multilinear
circuit S∗ for f without an increase in the number of OR gates.

We now describe a way of transforming a broom-like multilinear circuit S∗ for f into a
broom-like formula F for f without an increase in the number of OR gates.

Claim 2. Let g be a gate in S∗ such that PI (g) 6= ∅ . Then
(i) there is some monom m in PI (g) such that m ⊆ p for all p in PIg (f), or
(ii) there is some path w from g to the output of S∗ that is consistent with all p ∈

PIg (f).

Proof. We show that if (i) does not hold, then (ii) follows. This proof has a similar structure
compared to the proof of the Claim 1. Since (i) does not hold, PIg (f) cannot be empty.
So there is some p′ ∈ PIg (f) and, according to Lemma 4, some path w′ from g to the
output of S∗ that is consistent with p′. We prove that in fact

w′ is consistent with p for all p ∈ PIg (f) .

We distinguish two cases. First note that there is some m′ ∈ PI (g) with m′ ⊆ p′ because
p′ is an implicant of the function computed at g.

9

Case 1 : m′ 6⊆ p. There must be some m ∈ PI (g) such that m ⊆ p because p is an
implicant of the function computed at g. Lemma 5 yields that p = (p′ \m′) ∪m and that
w′ is consistent with p.

Case 2 : m′ ⊆ p. Because (i) does not hold, there is some p′′ in PIg (f) such that m′ 6⊆
p′′. Case 1 applies to p′′ because m′ 6⊆ p′′, and we conclude that w′ is consistent with p′′.
There must be some m′′ in PI (g) with m′′ ⊆ p′′. Lemma 5 tells us that p = (p′′ \m′′)∪m′

and that w′ is consistent with p.

We now describe a modification that we carry out for every gate g of S∗ with fanout
larger than 1 in order to reduce its fanout to 1. As with the modification for making the
circuit broom-like, we only have to check the prime implicants for which g is necessary.
The pathological case PI (g) = ∅ (g = 0) is trivial, so it suffices to discuss the two cases
listed in Claim 2.

Case 1 : There is some m in PI (g) such that m ⊆ p for all p in PIg (f). We remove
g from the circuit and replace all wires from g by subcircuits that each compute m. The
resulting circuit computes a function that is clearly implied by all prime implicants p in
PIg (f).

Case 2 : There is some path w from g to the output of S∗ that is consistent with all
p in PIg (f). We then cut all wires stemming from g that are not on path w, i.e. we
replace inputs to other gates from g by the constant 0. All prime implicants in PIg (f) are
preserved because after the modification w is still consistent with all of them. To see this,
note that, due to the multilinearity of the circuit, every AND gate on w can have at most
one input that depends on g (such an input must be on w itself).

The following lemma enables us to count the prime implicants of monotone functions
by counting the OR gates of their monotone broom-like formulas.

Lemma 7. Let F be a monotone broom-like formula computing f . Then F has at least
|PI (f)| − 1 OR gates.

Proof. We prove the lemma by induction on the size of the formula. If F does not contain
any OR gates, it is clear that the claim holds. Let F1 and F2 be formulas computing the
monotone functions f1 and f2, respectively. Since

|PI (f1 ∨ f2)| ≤ |PI (f1)|+ |PI (f2)| ,

|PI (f1 ∨ f2)| − 1 ≤ ((|PI (f1)| − 1) + (|PI (f2)| − 1)) + 1 ,

so the claim holds for F1 ∨ F2. So let us turn to the case of conjunction. W.l.o.g. let f1 be
a monom. Then

|PI (f1 ∧ f2)| ≤ |PI (f2)| ,

so the claim holds in this case too.

Theorem 3 follows immediately from Lemma 6 together with Lemma 7. Recall that,
according to Lemma 3, it is enough to consider monotone multilinear circuits.

10

3 An Upper Bound for the Clique Function

In this section we show that the union-freeness property is not sufficient for proving good
lower bounds for unrestricted monotone circuits. By Corollary 1, the function
CLIQUE (n, n− 1) requires n− 1 OR gates to be computed by a multilinear circuit. On
the other hand, we prove the following upper bound in this section.

Theorem 4. The function CLIQUE (n, n− 1) can be computed by a monotone formula
with O (log n) OR gates.

Thus, general monotone circuits for the clique function can be much more efficient than
multilinear circuits. The only other upper bound for the clique function that we are aware
of is given in [6] and is only for its non-monotone complexity.

We will use the following lemma for proving the upper bound.

Lemma 8. Let G be a graph with n vertices. If its complement G does not contain a
triangle and does not have two edges which are not incident to a common vertex, then G
has an (n− 1)-clique.

Proof. Suppose G does not have an n − 1-clique. Then G is not a star. Suppose G does
not have two edges which are not incident to a common vertex. Choose arbitrary distinct
edges e1 and e2 in G. Let e1 and e2 be incident to the common vertex u. Since G is not
a star, there is an edge e3 which is not incident to u. Let e2 and e3 be incident to the
common vertex v 6= u. The edges e1 and e3 must share the common vertex w, which is
distinct from u and v. Hence, u, v and w form a triangle in G.

We are now ready to prove Theorem 4.

Proof of Theorem 4. To design the desired formula for CLIQUE (n, n− 1) we use an error
correcting code C ⊆ Ak for some k over an alphabet A with a constant number of symbols
(independent of n) such that |C| ≥ n and the minimal distance d of C is larger than 3k/4.
The existence of such a code of length k = O(log n) is guaranteed by the Gilbert bound
(see e.g. [19]).

We assign to each vertex x (and hence, to each (n− 1)-clique V \{x}) its own codeword
code (x) ∈ C. For each 1 ≤ i ≤ k and a ∈ A, let Si,a be the intersection of all (n−1)-cliques
whose codes have symbol a in the i-th position. Hence,

Si,a = V \ {x ∈ V | code (x) has symbol a in position i} . (1)

Let mi,a be the monom consisting of all variables which correspond to edges having both
their endpoints in Si,a (if |Si,a| ≤ 1, we set mi,a = 1). We claim that the formula

F =
k∧

i=1

∨
a∈A

mi,a

11

computes CLIQUE (n, n− 1). Clearly, this formula has k (|A| − 1) = O(log n) OR gates.
Using distributivity we obtain the following representation of the function computed by F :

F =
∨

(a1,...,ak)∈Ak

k∧
i=1

mi,ai
. (2)

Every (n− 1)-clique V \ {x} with code (x) = (a1, . . . , ak) is accepted by the monom∧k
i=1 mi,ai

because the clique V \ {x} contains all the cliques Si,ai
, i = 1, . . . , k. Hence, by

(2) every (n− 1)-clique is accepted by F . It remains to show that F does not accept any
graph without an (n− 1)-clique. Let G be a graph accepted by F . Then by (2) there is a
sequence a1, . . . , ak of symbols in A such that G is accepted by the monom

∧k
i=1 mi,ai

. For
a vertex x ∈ V , let

Px = {i | code (x) has symbol ai in position i} .

Since the code C has minimal distance d > 3k/4, this implies that for every two distinct
vertices x and y,

|Px ∩ Py| ≤ k − d < k/4 . (3)

Let {x, y} be an edge of the complement graph G. Then the edge {x, y} cannot belong to
any of the monoms m1,a1 , . . . ,mk,ak

, implying that x 6∈ Si,ai
or y 6∈ Si,ai

for all i = 1, . . . , k.
According to (1) this means that for all i = 1, . . . , k, code (x) or code (y) has symbol ai at
position i. So we have

Px ∪ Py = [k] = {1, . . . , k} . (4)

Now we are able to show that G must contain an (n− 1)-clique. We do so by showing
that its complement G does not contain a triangle and does not contain a pair of vertex
disjoint edges. The result then follows with Lemma 8.

Assume first that G contains a triangle with vertices u, v and w. By (4), we have that
Pu ∪ Pw = [k] and Pv ∪ Pw = [k]. Taking the intersection of these two equations yields

(Pu ∩ Pv) ∪ Pw = [k] .

But by (3), we have that |Pu∩Pv| < k/4, so |Pw| > 3k/4. Similarly we obtain |Pu| > 3k/4,
implying that |Pu ∩ Pw| > k/2, a contradiction with (3).

Assume now that G contains a pair of vertex disjoint edges {u, v} and {x, y}. By (4),
we have Pu∪Pv = [k] and Px∪Py = [k]. Assume w.l.o.g. that |Pu| ≥ |Pv|. Then |Pu| ≥ k/2.
We know that

Pu = Pu ∩ [k] = Pu ∩ (Px ∪ Py) = (Pu ∩ Px) ∪ (Pu ∩ Py) .

Assume w.l.o.g. that |Pu∩Px| ≥ |Pu∩Py|. Then |Pu∩Px| ≥ |Pu|/2 ≥ k/4, a contradiction
with (3).

12

Theorem 4 tells us that monotone circuits for the function CLIQUE (n, n− 1) are
compressible, i.e. for sufficiently large n they require less OR gates than the respective DNF.
We now show that monotone circuits for most other clique functions are also compressible.
Thus, our optimal lower bounds for the clique function from the previous section cannot
be extended to general monotone circuits in any way.

Corollary 3. There exists some s0 such that, for all s ≥ s0 and n > s, the function
CLIQUE (n, s) has monotone circuits with less OR gates than the DNF of this function.

Proof. We pick s0 such that every function CLIQUE (s + 1, s) with s ≥ s0 is compress-
ible. This is possible according to Theorem 4. Now we show that a clique function
CLIQUE (n, s) with s ≥ s0 and n > s and is compressible. We choose arbitrary s + 1
vertices in the n-vertex graph taken by CLIQUE (n, s). Let p1, . . . , ps+1 be the prime impli-
cants that correspond to the s-cliques of the s+1 chosen vertices. We denote the other prime
implicants of CLIQUE (n, s) by q1, . . . , qk, so we can write the DNF of CLIQUE (n, s) as

CLIQUE (n, s) =

(
s+1∨
i=1

pi

)
∨

(
k∨

i=1

qi

)
. (5)

Here the disjunction
∨s+1

i=1 pi is the DNF of the function CLIQUE (s + 1, s), so this term
can be computed by a monotone circuit with less than s OR gates. Hence, according to (5)
the function CLIQUE (n, s) can be computed by a monotone circuit with less OR gates
than the DNF of this function.

4 Lower Bounds for Monotone Σ4-Circuits

A circuit has alternation depth d iff d is the highest number of blocks of OR gates and
blocks of AND gates on paths from input gates to the output. A Σd-circuit (respectively,
Πd-circuit) is a circuit with alternation depth at most d such that the output gate is an
OR gate (AND gate, respectively).

In this section we contrast the upper bound for the clique function proved in the
previous section with a lower bound for functions that are even harder than the clique
function in a certain sense. We introduced the polynomial function POLY (q, s) in Section
2.1. For some polynomial functions we give incompressibility results, similar to those for
multilinear circuits, also for monotone Σ4-circuits. We show that monotone Σ4-circuits for
these functions require at least as many OR gates as the respective DNFs. The construction
used in the proof of Theorem 4 yields a monotone Π3-formula. A monotone Π3-formula
is a simple kind of monotone Σ4-circuit. Thus, to prove upper bounds for the functions
we study in this section, we would have to give a more elaborate construction than we
did for the clique function. A monotone circuit for any of these functions that is more
efficient than the DNF would have to be more complicated than a Σ4-circuit. Therefore,
these hard polynomial functions we investigate here are an interesting starting point for

13

looking for new lower bounds. It is not even clear whether these polynomial functions can
be computed by unrestricted circuits that are smaller than the respective DNFs.

A Boolean function is s-disjoint if any two of its prime implicants do not have s variables
in common. The following lemma shows that the union-freeness property is a special case of
the disjointness property. This lemma names the properties of sufficiently disjoint functions
that we exploit when proving the lower bound for monotone Σ4-circuits.

Lemma 9. Let p1, ..., pr be prime implicants of a monotone Boolean function f and m be
an implicant of f . Let f be k-homogeneous and k/r-disjoint.

(i) If
⋃r

i=1 pi ⊇ m, then m ⊇ pi for some i.
(ii) If x1, . . . , xr are variables such that xi ∈ pi and xi 6∈ pj for i 6= j, then

⋃r
i=1 (pi \ {xi})

is not an implicant of f .

Proof. (i) There must be some prime implicant p of f with m ⊇ p. Since
⋃r

i=1 pi ⊇ p,
p must share at least k/r variables with some pi. Because f is k/r-disjoint, this implies
p = pi. Claim (ii) is a direct consequence of (i).

The following lemma deals with Π3-circuits with gates of unbounded fanin. We restrict
these circuits to depth 3. We require the output gate to be an AND gate (possibly with
only one input) and the inputs to this gate to be OR gates. The top fanin is the fanin of
the output gate. The bottom fanin is the maximal fanin of the AND gates representing
Π1-subcircuits (if there are no such subcircuits, we define the bottom fanin to be 1).

Lemma 10. Let f be a monotone k-homogeneous and s-disjoint function. If r ≤ k/2s and
h is a function such that h ≤ f (i.e., f evaluates to 1 if h does) and |PI (h) ∩ PI (f)| ≥ r,
then any monotone Π3-circuit for h with bottom fanin at most s − 1 must have top fanin
at least (k/2s)r.

Proof. Let S be a monotone Π3-circuit with top fanin a and bottom fanin at most s− 1,
and let F be the function computed by S. Let a < (k/2s)r. We now show that the circuit
S must then make an error, i.e. that F 6= h. For the sake of contradiction, assume that
F = h.

We choose arbitrary distinct prime implicants p1, . . . , pr ∈ PI (h) ∩ PI (f). Our goal
is to pick x1 ∈ p1, . . . , xr ∈ pr suitable for Lemma 9(ii). Lemma 9(ii) then yields a monom
m which, according to the Lemma, is not an implicant of h, but for which we show that it
is an implicant of F . This way we obtain F 6= h and contradict our assumption.

We pick the xi’s in the order indicated by their indices. During this process we consider
the preliminary monoms

mt =
t⋃

i=1

(pi \ {xi}) , t = 1, . . . , r .

The preliminary monom mt is available after the t-th step of the process. Finally, the
monom m = mr is the desired implicant of F needed for the contradiction with Lemma
9(ii).

14

Let F1, . . . , Fa be the functions computed by the Σ2-subcircuits of S that are inputs
to the AND gate which is the output gate of S. The function F computed by S can be
represented in the form

F =
a∧

i=1

Fi .

Let At denote the set of indices of the functions Fi which are not implied by mt, i.e. i ∈ At

iff mt is not an implicant of Fi.

Claim 3. There is always a choice of xt in order to make

|At| ≤
|At−1|
k/2s

.

Proof. We describe a choice of xt that makes At sufficiently small. For every i in At−1 we
choose some mi ∈ PI (Fi) with pt ⊇ mi. Every Fi has such a prime implicant because pt

is a prime implicant of h = F . As xt, we pick a variable of pt that does not belong to any
other of the prime implicants p1, . . . , pr. Since each of the prime implicants can share at
most s − 1 variables with each of the other r − 1 prime implicants, the prime implicant
pt has at least k − (s− 1) (r − 1) variables which do not belong to any of the other prime
implicants. Of these “private” variables of pt, at most s− 1 can belong to some particular
monom mi we chose, since the circuit has a bottom fanin of at most s − 1. If we add all
the occurrences of the private variables of pt in the monoms mi together, we count at most
(s− 1) |At−1| occurrences. Using that pt has at least k − (s− 1) (r − 1) private variables,
we find that at least one of these variables is in not more than

(s− 1) |At−1|
k − (s− 1) (r − 1)

≤ |At−1|
k/2s

of the chosen monoms. This sufficiently “rare” variable is our choice of xt. Since only those
i ∈ At−1 remain in At for which xt belongs to the chosen monom mi, the desired bound
for |At| follows.

We now finish the proof of Lemma 10. We start with |A0| = a < (k/2s)r. According
to the claim, we can always choose the x1, . . . , xr such that Ar is empty. This means the
finally constructed monom mr is in fact an implicant of F .

Since Σ4-circuits can be broken up naturally into Π3-circuits, our lower bound for
monotone Σ4-circuits follows easily from the previous lemma about monotone Π3-circuits.
We only have to pay attention to a few technicalities.

Theorem 5. Let f be a monotone k-homogeneous s-disjoint function such that |PI (f)| ≤
(k/2s)k/2s. Then every monotone Σ4-circuit for f must have at least |PI (f)|−1 OR gates.

Proof. Let S be a monotone Σ4-circuit with gates of fanin 2 which computes a monotone
k-homogeneous s-disjoint function f . We assume that S has the smallest possible number
of OR gates.

15

Without loss of generality we can assume that no Π1-subcircuit of S depends on more
than s − 1 variables, i.e. S has bottom fanin at most s − 1 when regarded as a circuit of
unbounded fanin. We can do so because a monom m computed by a Π1-subcircuit with
more than s − 1 variables can be implied by at most one prime implicant p ∈ PI (f) (f
is s-disjoint). We can remove this Π1-subcircuit and, if m is implied by p ∈ PI (f), add
p to the top level disjunction of S. The function computed after the modification has the
same prime implicants as the original one. This modification is allowed because it leaves
the total number of OR gates (with fanin two) unchanged, and we are only interested in
this number.

The function f can be represented as a disjunction of functions fi which are computed
by Π3-circuits: f =

∨
fi. Let fi be computed by the Π3-circuit Si. Every prime implicant

of f must be a prime implicant of at least one of the fi. Let R be the largest number
of prime implicants of f that are prime implicants of one particular fi = h. Let h be
computed by the Π3-circuit Si = H.

We claim that 2 ≤ R < k/2s cannot hold. To see this, assume the contrary. View
H as a Π3-circuit of unbounded fanin. We can apply Lemma 10 to H. Lemma 10 yields
that H must have a top fanin of at least (k/2s)R ≥ (k/2s)2 ≥ R2. Note that we may
assume w.l.o.g. that at most one of the inputs to the top level conjunction of H computes
a monom. (We can replace several such inputs by one input computing the conjunction
of the monoms.) Using this assumption, we conclude that H requires at least R2 − 1 OR
gates. However, a plain disjunction (DNF) of the prime implicants that h shares with f
could do the same job that H does in S, and requires only R − 1 < R2 − 1 OR gates of
fanin 2. This contradicts our assumption that S has the smallest possible number of OR
gates.

To finish the proof of Theorem 5, we distinguish the two remaining cases.
Case 1 : R = 1. Then S is essentially a DNF and needs |PI (f)| − 1 OR gates.
Case 2 : R ≥ k/2s. Again we view H as a circuit with gates of unbounded fanin.

Applying Lemma 10 with r = k/2s yields that H must have a top fanin of at least

(k/2s)k/2s ≥ |PI (f)| (this inequality is stated as an assumption of the theorem). When
built of fanin-2 gates, H requires at least |PI (f)|−1 OR gates since again we may assume
w.l.o.g. that at most one of the inputs to the top level conjunction of H consists of a single
monom.

The function POLY (q, s) is q-homogeneous. This function is also s-disjoint because
the graphs of two distinct polynomials of degree at most s− 1 cannot share s points. This
together with |PI (POLY (q, s))| = qs and Theorem 5 leads to the following lower bound.

Corollary 4. If s ≤ √
q/2, then any monotone Σ4-circuit for POLY (q, s) must have at

least qs − 1 OR gates (just as many as the DNF of this function).

16

5 Lower Bounds for Pseudoslice Functions

The t-slice function of f is the function ft = f ∧ T n
t ∨ T n

t+1, where T n
t is the t-th threshold

function of n variables. Slice functions are studied because a superpolynomial lower bound
on the monotone complexity of a slice function implies a lower bound of the same order
on its non-monotone complexity (see e.g. monographs [6, 7, 8]). Thus, a superpolynomial
lower bound for non-monotone circuits could be proved by proving a superpolynomial lower
bound for a slice function. Known arguments for superpolynomial lower bounds still fail
for slice functions. We suggest to approach this problem by studying the complexity of
functions that are similar to slice functions. We call these functions pseudoslice functions.
The t-pseudoslice function of f is the function f ′t = f ∨T n

t+1. Let |x| denote the number of
ones in the Boolean vector x. Then an equivalent definition of the t-pseudoslice f ′t of f is

f ′t (x) =


f (x) for |x| < t
f (x) for |x| = t
1 for |x| > t

.

On the other hand, the t-slice ft of f assumes the following values:

ft (x) =


0 for |x| < t
f (x) for |x| = t
1 for |x| > t

.

Thus, the t-slice and the t-pseudoslice function of f only differ for arguments with less
than t ones.

We are able to show that our lower bounds for multilinear circuits and monotone Σ4-
circuits also hold for certain pseudoslice functions. We first show how to extend our lower
bound for multilinear circuits to pseudoslice functions. The key step is to prove a variant
of Lemma 5(ii) for pseudoslice functions.

In the proof of Lemma 5(ii), the union-freeness of f is only used to assert that the
union of the prime implicants p and p′ does not contain any new prime implicant. This
allows us to state the following generalization of Lemma 5(ii).

Corollary 5 (Generalization of Lemma 5(ii)). Let g be a gate in a monotone mul-
tilinear circuit for a function f and p, p′ be prime implicants in PIg (f). Let m ⊆ p and
m′ ⊆ p′ be distinct prime implicants in PI (g). If f has no prime implicant other than p
and p′ which is a subset of p ∪ p′, then the identity p = (p′ \m′) ∪m holds.

With this corollary, it is easy to prove a variant of Lemma 5(ii) for pseudoslice functions.

Lemma 11 (Exchange Lemma for Pseudoslice Functions). Let g be a gate in a
monotone multilinear circuit for the t-pseudoslice f ′t of a monotone k-homogeneous union-
free function f such that t ≥ 2k. Let p and p′ be prime implicants of f that are in
PIg (f ′t). If m ⊆ p and m′ ⊆ p′ are distinct prime implicants in PI (g), then the identity
p = (p′ \m′) ∪m holds.

17

Proof. We apply corollary 5 to f ′t . According to corollary 5, all we need to show is that f ′t
has no prime implicant other than p and p′ which is a subset of p∪p′. The prime implicants
of f ′t are the prime implicants of f , which have length k, and the prime implicants of T n

t+1,
which have length t + 1 ≥ 2k + 1. Let q ⊆ p ∪ p′ be a prime implicant of f ′t . We have
|p| = |p′| = k because f is k-homogeneous. We conclude 2k ≥ |p ∪ p′| ≥ |q|. Thus, the
prime implicant q of f ′t must also be a prime implicant of f . Because f is union-free, this
implies q = p or q = p′.

This lemma easily yields the lower bound for pseudoslice functions.

Theorem 6. Let f be a monotone k-homogeneous union-free function. Then any multi-
linear circuit which computes the t-pseudoslice of f such that t ≥ 2k must have at least
|PI (f)| − 1 OR gates (just as many as the DNF of this function).

Proof. We adapt the proof of Lemma 6. The idea is to ignore the long prime implicants
of the pseudoslice functions. We use Lemma 11 in place of Lemma 5(ii). This yields the
following imitations of Claim 1 and Claim 2:

Claim 4. Let g be an AND gate in a monotone multilinear circuit for the t-pseudoslice
f ′t of f with inputs g1 and g2. If PI (g1) is not empty, then there exists a monom m in
PI (g1) ∪ PI (g2) such that m ⊆ p for all prime implicants p ∈ PI (f) ∩ PIg (f ′t).

Claim 5. Let g be a gate in a monotone multilinear circuit for the t-pseudoslice f ′t of f
such that PI (g) 6= ∅. Then

(i) there is some m in PI (g) such that m ⊆ p for all prime implicants p ∈ PI (f) ∩
PIg (f ′t), or

(ii) there is some path w from g to the output that is consistent with all prime implicants
p ∈ PI (f) ∩ PIg (f ′t).

Using the same kind of circuit modifications as in the proof of Lemma 6, we are able
to transform the original circuit for f ′t into a broom-like formula for a function f̃ such that

PI
(
f̃
)
⊇ PI (f). The lower bound then follows with Lemma 7.

Since the function CLIQUE (n, s) is s (s− 1) /2-homogeneous, we obtain the following
lower bound.

Corollary 6. Any multilinear circuit which computes the t-pseudoslice of CLIQUE (n, s)
such that t ≥ s (s− 1) must have at least

(
n
s

)
− 1 OR gates.

The function POLY (q, s) is by definition q-homogeneous.

Corollary 7. Any multilinear circuit which computes the t-pseudoslice of POLY (q, s)
such that s ≤ q/2 and t ≥ 2q must have at least qs − 1 OR gates.

Next we show that our lower bounds for monotone Σ4-circuits also hold for certain
pseudoslices.

18

Theorem 7. Let f ′t be the t-pseudoslice of a monotone k-homogeneous s-disjoint function

f such that |PI (f)| ≤ (k/2s)k/2s and t ≥ k2/2s. Then every monotone Σ4-circuit for f ′t
must have at least |PI (f)| − 1 OR gates.

Proof. First we prove a version of Lemma 10 that also holds for functions f̃ whose prime
implicants are the prime implicants of f and perhaps some additional prime implicants of
length more than t. We can proceed as in the proof of Lemma 10. We only need to deal
with prime implicants of f . We determine an implicant mr of the given Π3-circuit for f̃
in the same way. This implicant has at most rk ≤ k2/2s variables. Hence, the monom mr

must also be an implicant of f , and we again find a contradiction with Lemma 9(ii).
We now adapt the proof of Theorem 5 in order to make it work for the pseudoslices we

are dealing with here. We can basically leave it unchanged. Again, we only deal with prime
implicants of f . In the proof of Theorem 5 we assume w.l.o.g. that no Π1-subcircuit depends
on more than s− 1 variables. We give instructions there for modifying the circuit to make
it meet this requirement. In the case of computing pseudoslices, these modifications may
alter the function computed by the circuit, but we always preserve the prime implicants of
f . As a result, we obtain a Σ4-circuit that computes a function f̃ as described above. So
we can apply the modified version of Lemma 10 in the same way as we applied Lemma 10
in the proof of Theorem 5. This yields the lower bound.

Corollary 8. Any monotone Σ4-circuit which computes the t-pseudoslice of POLY (q, s)
such that s ≤ √

q/2 and t ≥ q2/2s must have at least qs − 1 OR gates.

6 Conclusion

We prove optimal lower bounds on the number of OR gates for multilinear circuits and
monotone Σ4-circuits. These kinds of circuits need as many OR gates as the DNFs of the
functions considered. This incompressibility is an interesting property of the functions we
study here, namely the clique function and the polynomial function. When dealing with
more general circuit models, this may make it easier to prove lower bounds for the clique
function and the polynomial function. We give an upper bound for the clique function in
order to show that monotone circuits for the clique function require less OR gates than the
respective DNFs in general. Hence, our incompressibility results for multilinear circuits
computing the clique function cannot be extended to unrestricted monotone circuits. While
our upper bound for the clique function also holds for monotone Σ4-circuits, we give a
class of polynomial functions whose monotone Σ4-circuits are also incompressible. Thus,
these polynomial functions are in this sense even harder to compute than clique functions.
This observation makes the polynomial function interesting to study when looking for new
lower bounds. It is an open problem to find a non-trivial upper bound for the polynomial
function. Finally, we note that our lower bounds for multilinear circuits and monotone Σ4-
circuits also hold for certain pseudoslice functions. Since known lower bound arguments
for unrestricted monotone circuits seem to fail for pseudoslice functions, our lower bounds

19

could be a starting point for the improvement of lower bounds for unrestricted monotone
circuits.

Acknowledgement I am grateful to Stasys Jukna for helpful discussions.

References

[1] Razborov, A.: Lower bounds for the monotone complexity of some Boolean functions.
Sov. Math., Dokl. 31 (1985) 354–357

[2] Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-
logarithmic depth. SIAM J. Discrete Math. 3 (1990) 255–265

[3] Razborov, A.: Applications of matrix methods to the theory of lower bounds in
computational complexity. Combinatorica 10 (1990) 81–93

[4] Gál, A.: A characterization of span program size and improved lower bounds for
monotone span programs. Comput. Complexity 10 (2001) 277–296

[5] Gál, A., Pudlák, P.: A note on monotone complexity and the rank of matrices. Inf.
Process. Lett. 87 (2003) 321–326

[6] Wegener, I.: The complexity of Boolean functions. Wiley-Teubner Series in Computer
Science. John Wiley & Sons Ltd., Chichester (1987)

[7] Dunne, P.E.: The complexity of Boolean networks. Volume 29 of APIC Studies in
Data Processing. Academic Press Ltd., London (1988)

[8] Savage, J.E.: Models of computation: Exploring the power of computing. Addison-
Wesley Publishing Company, Reading, MA (1998)

[9] Wegener, I.: Branching programs and binary decision diagrams. Theory and applica-
tions. SIAM Monographs on Discrete Mathematics and Applications (2000)

[10] Andreev, A.: On a method for obtaining lower bounds for the complexity of individual
monotone functions. Sov. Math., Dokl. 31 (1985) 530–534

[11] Nisan, N., Wigderson, A.: Lower bounds on arithmetic circuits via partial derivatives.
Comput. Complexity 6 (1996/97) 217–234

[12] Raz, R.: Multilinear-NC1 6= Multilinear-NC2. In: FOCS, IEEE Computer Society
(2004) 344–351

[13] Raz, R.: Multi-linear formulas for permanent and determinant are of super-polynomial
size. In Babai, L., ed.: STOC, ACM (2004) 633–641

20

[14] Sengupta, R., Venkateswaran, H.: Multilinearity can be exponentially restrictive (pre-
liminary version). Technical Report GIT-CC-94-40, Georgia Institute of Technology.
College of Computing (1994)

[15] Ponnuswami, A.K., Venkateswaran, H.: Monotone multilinear boolean circuits for
bipartite perfect matching require exponential size. In Lodaya, K., Mahajan, M.,
eds.: FSTTCS. Volume 3328 of Lecture Notes in Computer Science., Springer (2004)
460–468

[16] Pudlák, P.: The hierarchy of Boolean circuits. Comput. Artificial Intelligence 6 (1987)
449–468

[17] Grigni, M., Sipser, M.: Monotone complexity. In Paterson, M.S., ed.: Boolean
function complexity. Volume 169 of London Mathematical Society Lecture Note Series.
Cambridge University Press, Cambridge (1992) 57–75

[18] Borodin, A., Razborov, A.A., Smolensky, R.: On lower bounds for read-k-times
branching programs. Comput. Complexity 3 (1993) 1–18

[19] van Lint, J.H.: Introduction to coding theory. Volume 86 of Graduate Texts in Math-
ematics. Springer-Verlag, New York (1982)

21

