Chapter 8

Animation of OCL Operation
Contracts

In this chapter we present an approach to animating OCL operation contracts.
By translating OCL constraints to arithmetic formulas with bounded quantifiers
and solving these using our techniques presented in Chapter 5, we can perform
animation efficiently without relying on additional guidance from the user. We
implemented our approach in the tool OCLexec that generates from OCL opera-
tion contracts corresponding Java implementations which call a constraint solver
at runtime. The generated code can serve as a prototype.

In the sequel, we first demonstrate the benefits of animation by means of a
case study. Then we present our animation technique in detail. We describe a
preliminary analysis of operation contracts that narrows down the set of classes
for which new instances may need to be created and the set of constraints that
need to be considered for animation. Moreover, we show how OCL expressions
can be mapped to arithmetic formulas with bounded quantifiers. Finally, we give
experimental results for our animation tool OCLexec.

8.1 A Case Study

In this section we present an example of a specification that could benefit from
animation.

8.1.1 The Task

Figure 8.1 shows an excerpt from a possible UML model of a company. Em-
ployees are temporarily assigned to customers to carry out the customers’ orders.
Customers specify the skills that they would like the employee to have for han-
dling their order (association end requestedskills). Also, employees may give
a list of customers that they prefer to work for (attribute preferredcustomers).

103

104 Chapter 8. Animation of Operation Contracts

Company

=1 name: String [1]

&% assignNewCustomers(in Customer[*])

- company|[1]

- employees [*]

Employee

name: String [1]
preferredCustomers: Customer [*]

i

- employee [*] - employee [0..1]

- skills [*] - customer [0..1]

Skill Customer

=1 name: String [1] =1 name: String [1]

- requestedSkills [*] - customer [*]

Figure 8.1: Excerpt from a possible UML model of a company

A task of the system which we are specifying is to perform an adequate assign-
ment of employees to customers. What is sought is an assignment that respects
the preferences of both the customers and the employees. This kind of assign-
ment problem can be regarded as an instance of the prominent stable marriage
problem [68]. The term stable marriage is inspired by the idea of matching men
to women in a consistent manner. It is well-known that if the numbers of men
and women are equal, it is always possible to find a stable assignment, i.e., an
assignment in which no man and woman leave their assigned partners in order
to form a new couple because they both prefer their new partner to the one that
was assigned to them.

8.1.2 Anatomy of the Operation Contract

Since the operation contract in Figure 8.2 is nontrivial, we explain why it ex-
presses the requirements. The precondition of the operation contract states that
there are at least as many available employees, i.e., employees that are currently
not assigned to a customer, as customers that are supposed to be matched. This
condition is obviously necessary for the existence of any assignment of available

8.1. A Case Study 105

context Company::assignNewCustomers (newCustomers: Set (Customer)):

pre enoughEmployees: employees—>select (customer.oclIsUndefined())->size()
>= newCustomers—->size ()

post allCustomersAssigned:
employees@pre->select (customer@pre.oclIsUndefined()
and not customer.oclIsUndefined())
—>collect (customer)—->asSet () = newCustomers

post assignmentStable:
employees@pre->select (customer@pre.oclIsUndefined())
->forAll (e | newCustomers—->forAll (c |
let
matchedSkills : Set (Skill)
= c.requestedSkills@pre->intersection(c.employee.skills@pre),

potentialSkills : Set (Skill)
= c.requestedSkills@pre->intersection(e.skills@pre)

in
(potentialSkills->includesAll (matchedSkills)
implies potentialSkills = matchedSkills)
or
(e.preferredCustomers@pre->includes (c)
implies e.preferredCustomers@pre->includes (e.customer))))
modifies only: employees—->select (customer.oclIsUndefined()) ::customer,

newCustomers: :employee

Figure 8.2: Operation contract for assigning new customers to available employees

106 Chapter 8. Animation of Operation Contracts

employees to all new customers. As mentioned above, this condition is also suf-
ficient for the existence of a stable assignment. In the precondition, we use the
built-in operation oc1IsUndefined for testing whether the value of the customer
attribute of an Employee object is null or a reference to a customer object. Us-
ing this test, we can form the set of available employees and apply the built-in
operation size to it.

The first postcondition of the operation contract asserts that after completion
of the operation all customers have in fact been assigned to available employees.
In this postcondition, first the set of employees that were available in the pre-state
but are no longer available in the post-state is defined. Then we use the collect
comprehension of OCL to obtain the collection of customers that are assigned to
this set of employees. This collection is a bag, since OCL semantics is based on
the general case that several employees may be assigned to the same customer,
although this is excluded by the multiplicities in the class diagram. We use the
built-in operation asset to convert the bag to a set, so it can be compared to the
set of new customers.

The second postcondition asserts that the assignment performed by the op-
eration is stable. We quantify over all pairs e, ¢ of available employees and new
customers and consider the employee assigned to the customer (c.employee) as
well as the customer assigned to the available employee (e.customer). This post-
condition rules out that the pair e-c is a better match than both c-c.employee
and e-e.customer. It does so by stating that the skills potentially provided by
employee e to customer c are not a proper superset of the skills provided by
c.employee to customer c, or that employee e also prefers e.customer if em-
ployee e lists customer c as preferred.

To complete the operation contract, we still need to specify which attribute
values may be changed by the operation. We do this by adding a modifies only
clause which states that the operation may only modify the attribute customer
for the available employees and the attribute employee for the new customers. All
other attribute values must be left unchanged by the operation. The operation
contract in Figure 8.2 does not contain an objective function, but our animation
technique would also be able to take an objective function into account. Modifies
only clauses and objective functions have not yet been incorporated into the OCL
standard. See Section 6.1 for details about these extensions to OCL.

We have now obtained an operation contract that precisely reflects the re-
quirements. Note that the contract is underspecified, i.e., it does not prescribe a
unique result, but allows the operation to perform any stable assignment. More-
over, the contract does not indicate how such an assignment can be found.

8.1.3 Animating the Operation Contract

The tool OCLexec we implemented our approach in generates Java method bod-
ies. It inserts code that enforces the postconditions of the operation and all class

8.2. Execution of Animation 107

invariants. OCLexec serializes an intermediate representation of the operation
contract to a file that the generated method body can access as a resource. This
intermediate representation is based on the language of arithmetic formulas with
bounded quantifiers introduced in Chapter 5. The method body only reads the
serialized file and calls a library routine responsible for animating the operation.
The pre-state considered for animation is simply the pre-state of the method call.
In principle, the results returned by this generated method body cannot be dis-
tinguished from results returned from a manually implemented method body that
conforms to the operation contract. Note that inserting code in method bodies
should not interfere with other code that may have been generated for the model.
Thus, the developer can use her favorite tool for the overall code generation and
then use our tool only for selected method bodies.

Figure 8.3(a) depicts a very simple system state in which the operation
assignNewCustomers can be called. The company employs two staff mem-
bers whose names are Smith and Jones. There are two skills: French and German
language skills. Smith speaks French while Jones speaks German. There are two
customers, called Petit and Schmidt, who ask for French and German language
skills, respectively, from the employee that is assigned to them. Moreover, em-
ployee Smith prefers to work for customer Schmidt. Figure 8.3(b) shows a possible
outcome of calling the generated method for the two customers in this system
state. Employee Smith is assigned to customer Schmidt and employee Jones is
assigned to customer Petit. Unfortunately, neither customers’ request for lan-
guage skills is met. However, the assignment is stable, since employee Smith is
now assigned to his preferred customer Schmidt and therefore not interested in
changing the assignment.

Depending on the needs of the company, this result of the operation call
may not be sufficient. It may well be that the customers’ demands for skills are
deemed more important than the preferences of the employees. If this is the case,
animation would have revealed an important flaw of the specification. Note that
this kind of unforeseen behavior cannot be discovered if the constraints are only
tested on system states that the specifier has designed to be correct or incorrect.

If the operation is not performance-critical and sufficiently efficient code can
be generated for it, animation may allow to skip or postpone its implementation.
Such an opportunity saves implementation effort and helps avoid coding errors.
Moreover, a larger part of the development can be carried out on a higher and
platform independent level of abstraction. In this sense, animation of operation
contracts can be regarded as a contribution to Model-Driven Development.

8.2 Execution of Animation

We implemented an animation technique that is based on a translation of the
operation contract to an arithmetic formula with bounded quantifiers as described

108 Chapter 8. Animation of Operation Contracts

co : Company

name = Example Corp.

el: Employee

name = Smith
preferredCustomers = [c2]

e2 : Employee

name = Jones
preferredCustomers = []

s2: Skill s1: Skill
name = German name = French
c2: Customer cl: Customer
name = Schmidt name = Petit

(a) State before animation

co : Company

name = Example Corp.

el: Employee

name = Smith
preferredCustomers = [c2]

e2 : Employee

name = Jones
preferredCustomers = []

s2 : Skill sl : Skill
name = German name = French
c2: Customer cl: Customer
name = Schmidt name = Petit

(b) State after animation

Figure 8.3: Effect of animating a call to the operation assignNewCustomers
on a system state

